Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let ABCDABCD be a parallelogram such that AB=q,AD=p\overrightarrow{AB} = \vec{q}, \overrightarrow{AD} = \vec{p} and ?BAD?BAD be an acute angle. If r\vec{r} is the vector that coincides with the altitude directed from the vertex BB to the side ADAD, then r\vec{r} is given by :

A

r=3q3(p.q)(p.p)p\vec{r} = 3\vec{q} - \frac{3\left(\vec{p}.\vec{q}\right)}{\left(\vec{p}.\vec{p}\right)}\vec{p}

B

r=q+(p.qp.p)p\vec{r} = -\vec{q} +\left( \frac{\vec{p}.\vec{q}}{\vec{p}.\vec{p}}\right)\vec{p}

C

r=q(p.qp.p)p\vec{r} = \vec{q} -\left( \frac{\vec{p}.\vec{q}}{\vec{p}.\vec{p}}\right)\vec{p}

D

r=3q+3(p.q)(p.p)p\vec{r} =-3 \vec{q} + \frac{3\left(\vec{p}.\vec{q}\right)}{\left(\vec{p}.\vec{p}\right)}\vec{p}

Answer

r=q+(p.qp.p)p\vec{r} = -\vec{q} +\left( \frac{\vec{p}.\vec{q}}{\vec{p}.\vec{p}}\right)\vec{p}

Explanation

Solution

AX=p.qppp=p.qp2p\overrightarrow{AX} =\frac{\vec{p}.\vec{q}}{\left|\vec{p}\right|} \frac{\vec{p}}{\left|\vec{p}\right|} = \frac{\vec{p}.\vec{q}}{\left|\vec{p}\right|^{2}}\vec{p} BX=BA+AX\overrightarrow{BX} = \overrightarrow{BA} + \overrightarrow{AX} =q+p.qp2p= - \vec{q} + \frac{\vec{p}.\vec{q}}{\left|\vec{p}\right|^{2}}\vec{p}