Solveeit Logo

Question

Mathematics Question on Triangles

Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be the sum of areas of all the triangles formed in this process, then:

A

P2=363QP^2 = 36\sqrt{3}Q

B

P2=363QP^2 = 36\sqrt{3}Q

C

P2=363QP^2 = 36\sqrt{3}Q

D

P2=363QP^2 = 36\sqrt{3}Q

Answer

P2=363QP^2 = 36\sqrt{3}Q

Explanation

Solution

Triangle
Area of first =34a2\text{Area of first } \triangle = \frac{\sqrt{3}}{4} a^2
Area of second =34a24=3a216\text{Area of second } \triangle = \frac{\sqrt{3}}{4} \cdot \frac{a^2}{4} = \frac{\sqrt{3}a^2}{16}
Area of third =34a216=3a264\text{Area of third } \triangle = \frac{\sqrt{3}}{4} \cdot \frac{a^2}{16} = \frac{\sqrt{3}a^2}{64}
Sum of areas=3a24(1+14+116+)\text{Sum of areas} = \frac{\sqrt{3}a^2}{4} \left( 1 + \frac{1}{4} + \frac{1}{16} + \cdots \right)
The sum of this infinite geometric series is:
Q=34a21114=34a243=33a2Q = \frac{\sqrt{3}}{4} \cdot a^2 \cdot \frac{1}{1 - \frac{1}{4}} = \frac{\sqrt{3}}{4} \cdot a^2 \cdot \frac{4}{3} = \frac{\sqrt{3}}{3} a^2
Perimeter Calculations:
Perimeter of first =3a\text{Perimeter of first } \triangle = 3a
Perimeter of second =3a2=3a2\text{Perimeter of second } \triangle = 3 \cdot \frac{a}{2} = \frac{3a}{2}
Perimeter of third =3a4=3a4\text{Perimeter of third } \triangle = 3 \cdot \frac{a}{4} = \frac{3a}{4}
P=3a(1+12+14+)P = 3a \left( 1 + \frac{1}{2} + \frac{1}{4} + \cdots \right)
The sum of this infinite geometric series is:
P=3a1112=3a2=6aP = 3a \cdot \frac{1}{1 - \frac{1}{2}} = 3a \cdot 2 = 6a
Final Calculations:
a=P6a = \frac{P}{6}
Q=13P236Q = \frac{1}{\sqrt{3}} \cdot \frac{P^2}{36}
P2=363QP^2 = 36 \sqrt{3} Q
Answer: (1)  P=363Q(1)\; P = 36\sqrt{3}Q