Solveeit Logo

Question

Mathematics Question on distance and displacement

Let ABC be a triangle such that BC\vec{BC}=a\vec a,CA\vec{CA} =b\vec b,AB\vec AB=c\vec c,|a\vec a|=62\sqrt2,|b\vec b|=23\sqrt3 and b\vec bc\vec c=12 Consider the statements:
(S1):|(a\vec a×b\vec b)+(c\vec c×d\vec d)|−|c\vec c|=6(22\sqrt2−1)
(S2):\angleACB=cos−1⁡(23\sqrt{\frac{2}{3}})
Then

A

Both (S1) and (S2) are true

B

Only (S1) is true

C

Only (S2) is true

D

Both (S1) and (S2) are false

Answer

Only (S2) is true

Explanation

Solution

Let ABC be a triangle such that
a\vec a+b\vec b+c\vec c=0⋯(i)
then
a\vec a+c\vec c=−b\vec b
then
(a\vec a+c\vec cbb=−b\vec b×b\vec b
a\vec a×b\vec b+c\vec c×b\vec b=0\vec 0⋯(ii)
For
(S1):|a\vec a×b\vec b+c\vec c×b\vec b|−|c\vec c|=6(22\sqrt2−1)
|(a\vec a+c\vec cb\vec b|−|c\vec c|=6(22\sqrt2−1)
|c\vec c|=6−122\sqrt2 (not possible)
Hence (S 1) is not correct
For (S 2) : from (i)
b\vec b+c\vec c=−a\vec a
b\vec bb\vec b+c\vec cb\vec b=−a\vec ab\vec b
⇒ 12+12=−62\sqrt2⋅23\sqrt3cos⁡(π−\angleACB)
∴ cos⁡(\angleACB)=23\sqrt{\frac{2}{3}}
∴ ∠ACB=cos−123\sqrt{\frac{2}{3}}
S(2) is correct.