Question
Mathematics Question on distance and displacement
Let ABC be a triangle such that BC=a,CA=b,AB=c,|a|=62,|b|=23 and b⋅c=12 Consider the statements:
(S1):|(a×b)+(c×d)|−|c|=6(22−1)
(S2):∠ACB=cos−1(32)
Then
A
Both (S1) and (S2) are true
B
Only (S1) is true
C
Only (S2) is true
D
Both (S1) and (S2) are false
Answer
Only (S2) is true
Explanation
Solution
∵ a+b+c=0⋯(i)
then
a+c=−b
then
(a+c)×b=−b×b
∴ a×b+c×b=0⋯(ii)
For
(S1):|a×b+c×b|−|c|=6(22−1)
|(a+c)×b|−|c|=6(22−1)
|c|=6−122 (not possible)
Hence (S 1) is not correct
For (S 2) : from (i)
b+c=−a
⇒ b⋅b+c⋅b=−a⋅b
⇒ 12+12=−62⋅23cos(π−∠ACB)
∴ cos(∠ACB)=32
∴ ∠ACB=cos−132
∴ S(2) is correct.