Solveeit Logo

Question

Question: Let \(a,b,c\) be a complex number, then the equation \(a^{2} + b^{2} =\) cannot have a root, such th...

Let a,b,ca,b,c be a complex number, then the equation a2+b2=a^{2} + b^{2} = cannot have a root, such that.

A

1- 1

B

c2c^{2}

C

c2- c^{2}

D

None of these

Answer

1- 1

Explanation

Solution

Suppose there exists a complex number zk=cos2θk+sin2θk=1|z_{k}| = \sqrt{\cos^{2}\theta_{k} + \sin^{2}\theta_{k}} = 1 which satisfies the given equation and is such that 1zk=(cosθk+isinθk)1=(cosθkisinθk)\frac{1}{z_{k}} = (\cos\theta_{k} + i\sin\theta_{k})^{- 1} = (\cos\theta_{k} - i\sin\theta_{k}).

Then (1z1)+(1z2)+.....+(1zn)\left( \frac{1}{z_{1}} \right) + \left( \frac{1}{z_{2}} \right) + ..... + \left( \frac{1}{z_{n}} \right)=(cosθ1+.....+cosθn)i(sinθ1+.....+sinθn)= (\cos\theta_{1} + ..... + \cos\theta_{n}) - i(\sin\theta_{1} + ..... + \sin\theta_{n})z1+z2+.....+zn=1z1+1z2+.....+1zn|z_{1} + z_{2} + ..... + z_{n}| = \left| \frac{1}{z_{1}} + \frac{1}{z_{2}} + ..... + \frac{1}{z_{n}} \right|

\because(cosθ1+.....+cosθn)2+(sinθ1+....+sinθn)2\sqrt{(\cos\theta_{1} + ..... + \cos\theta_{n})^{2} + (\sin\theta_{1} + .... + \sin\theta_{n})^{2}} becausez=1zzz=1\overline{z} = \frac{1}{z} \Rightarrow z\overline{z} = 1

But z2=1z=1|z|^{2} = 1 \Rightarrow |z| = 1 is not possible. Hence given equation cannot have a root z=x+iyz = x + iy such that z+i=zi|z + i| = |z - i|.