Solveeit Logo

Question

Question: Let $AB: x+2y-3=0$, $BC: 2x-y+5=0$ and $AC: x-2=0$ be sides of $\triangle ABC$. Match the entries of...

Let AB:x+2y3=0AB: x+2y-3=0, BC:2xy+5=0BC: 2x-y+5=0 and AC:x2=0AC: x-2=0 be sides of ABC\triangle ABC. Match the entries of List-I with the correct entries of List-II.

List-IList-II
(P) Circumcentre of ABC\triangle ABC, is(1) (75,115)\left(-\frac{7}{5}, \frac{11}{5}\right)
(Q) Centroid of ABC\triangle ABC, is(2) (135,13130)\left(\frac{13}{5}, \frac{131}{30}\right)
(R) Orthocentre of ABC\triangle ABC, is(3) (2,194)\left(2, \frac{19}{4}\right)
(S) Vertex BB, is(4) (1,1)(1,1)
(5) The point which divides the distance between orthocentre and circumcentre in the ratio 2:1 internally
A

P\rightarrow(1); Q\rightarrow(5); R\rightarrow(4); S\rightarrow(3)

B

P\rightarrow(4); Q\rightarrow(5); R\rightarrow(2); S\rightarrow(3)

C

P\rightarrow(3); Q\rightarrow(5); R\rightarrow(1); S\rightarrow(1)

D

P\rightarrow(2); Q\rightarrow(2); R\rightarrow(3); S\rightarrow(1)

Answer

P\rightarrow(3); Q\rightarrow(5); R\rightarrow(1); S\rightarrow(1)

Explanation

Solution

The vertices are A(2, 1/2), B(-7/5, 11/5), and C(2, 9). Since mAB=1/2m_{AB} = -1/2 and mBC=2m_{BC} = 2, AB is perpendicular to BC. Thus, ABC\triangle ABC is right-angled at B. Orthocentre (R) is the vertex B: (7/5,11/5)(-7/5, 11/5), which matches (1). Circumcentre (P) is the midpoint of hypotenuse AC: ((2+2)/2,(1/2+9)/2)=(2,19/4)((2+2)/2, (1/2+9)/2) = (2, 19/4), which matches (3). Centroid (Q) is the point dividing the segment joining orthocentre and circumcentre in the ratio 2:1 internally. This is the definition given in (5). Vertex B (S) is (7/5,11/5)(-7/5, 11/5), which matches (1). Thus, P\rightarrow(3); Q\rightarrow(5); R\rightarrow(1); S\rightarrow(1).