Solveeit Logo

Question

Question: Let \(AB\) be a chord of circle \({{x}^{2}}+{{y}^{2}}={{r}^{2}}\) subtending a right angle at the ce...

Let ABAB be a chord of circle x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}} subtending a right angle at the centre. Then the locus of the centroid of ΔPAB\Delta PAB as PP moves on circle –

(a) A parabola
(b) A circle
(c) An ellipse
(d) A pair of straight lines

Explanation

Solution

Hint: This question is based on circle’s properties and concept of locus. First of all, we assume point QQ as (h,k)\left( h,k \right), where QQ is centroid of ΔPAB\Delta PAB, for which we have to find the locus of centroid.

By using following properties, we calculate locus of centroid according to the question –

(i) If two lines of slope m1{{m}_{1}} and m2{{m}_{2}} are perpendicular to each other, then

m1×m2=1{{m}_{1}}\times {{m}_{2}}=-1

(ii) If centroid of triangle ΔABC\Delta ABC where A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right), B(x2,y2)B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) is G(x,y)G\left( x,y \right), then

x=x1+x2+x33x=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} and y=y1+y2+y33y=\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}

Here, we assume chordABAB, where A(rcosθ1,rsinθ1)A\left( r\cos {{\theta }_{1}},r\sin {{\theta }_{1}} \right) and B(rcosθ2,rsinθ2)B\left( r\cos {{\theta }_{2}},r\sin {{\theta }_{2}} \right), but according to the question, point PP is variable, which moves in circle. We assume PP is(x1,y1)\left( {{x}_{1}},{{y}_{1}} \right). Now by using properties and equation of circle, we eliminate variable, x1{{x}_{1}} andy1{{y}_{1}}, and get equation in terms of(h,k)\left( h,k \right), because centroid of ΔPAB\Delta PAB is assumed to be(h,k)\left( h,k \right).

Complete step-by-step answer:

Now, let us get started with the solution.

We have the equation of circle as x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}} … (i)

Therefore, we get that the centre is (0,0)\left( 0,0 \right) and radius =r=r

So, the circle can be represented as –

According to question, chord ABAB subtends right angle on centre O(0,0)O\left( 0,0 \right). Let us assume AA and BB are parametric points of a circle. So, AA is (rcosθ1,rsinθ1)\left( r\cos {{\theta }_{1}},r\sin {{\theta }_{1}} \right) and BB is (rcosθ2,rsinθ2)\left( r\cos {{\theta }_{2}},r\sin {{\theta }_{2}} \right).

Now, according to the question, OAOA and OBOB made 9090{}^\circ to each other. So, the multiplication of slopes of OAOA and OBOB is 1-1.

We know that, slope of line joining two points (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) =(y2y1)(x2x1)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}.

So, we can find the slope of line OAOA joining O(0,0)O\left( 0,0 \right) and A(rcosθ1,rsinθ1)A\left( r\cos {{\theta }_{1}},r\sin {{\theta }_{1}} \right) as =(rsinθ11)(rcosθ11)=\dfrac{\left( r\sin {{\theta }_{1}}-1 \right)}{\left( r\cos {{\theta }_{1}}-1 \right)}

mOA=tanθ1\Rightarrow {{m}_{OA}}=\tan {{\theta }_{1}}

Now, we can find the slope of line OBOB joining O(0,0)O\left( 0,0 \right) and B(rcosθ2,rsinθ2)B\left( r\cos {{\theta }_{2}},r\sin {{\theta }_{2}} \right) as =(rsinθ21)(rcosθ21)=\dfrac{\left( r\sin {{\theta }_{2}}-1 \right)}{\left( r\cos {{\theta }_{2}}-1 \right)}

mOB=tanθ2\Rightarrow {{m}_{OB}}=\tan {{\theta }_{2}}

According to the question, OAOA and OBOB are perpendicular. So, we have condition as

mOA×mOB=1{{m}_{OA}}\times {{m}_{OB}}=-1

tanθ1×tanθ1=1\Rightarrow \tan {{\theta }_{1}}\times \tan {{\theta }_{1}}=-1

sinθ1×sinθ2cosθ1×cosθ2=1\Rightarrow \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}}=-1

cosθ1.cosθ2+sinθ1.sinθ2=0\Rightarrow \cos {{\theta }_{1}}.\cos {{\theta }_{2}}+\sin {{\theta }_{1}}.\sin {{\theta }_{2}}=0 … (ii)

Now as we know that centroid of ΔABC\Delta ABC, where A(x1,y1)A\left( {{x}_{1}},{{y}_{1}} \right), B(x2,y2)B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) is G(x,y)G\left( x,y \right), then

x=x1+x2+x33x=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} and y=y1+y2+y33y=\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}

Now let us take a point PP which moves on circle is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and centroid of ΔPAB\Delta PAB, where P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right), A(rcosθ1,rsinθ1)A\left( r\cos {{\theta }_{1}},r\sin {{\theta }_{1}} \right) and B(rcosθ2,rsinθ2)B\left( r\cos {{\theta }_{2}},r\sin {{\theta }_{2}} \right) is G(h,k)G\left( h,k \right), then

h=x1+rcosθ1+rcosθ23h=\dfrac{{{x}_{1}}+r\cos {{\theta }_{1}}+r\cos {{\theta }_{2}}}{3}

k=y1+rsinθ1+rsinθ23k=\dfrac{{{y}_{1}}+r\sin {{\theta }_{1}}+r\sin {{\theta }_{2}}}{3}

So, we have 3h=x1+r(cosθ1+cosθ2)3h={{x}_{1}}+r\left( \cos {{\theta }_{1}}+\cos {{\theta }_{2}} \right)

3hr(cosθ1+cosθ2)=x1\Rightarrow 3h-r\left( \cos {{\theta }_{1}}+\cos {{\theta }_{2}} \right)={{x}_{1}}

And for k, we have 3k=y1+r(sinθ1+sinθ2)3k={{y}_{1}}+r\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right)

3kr(sinθ1+sinθ2)=y1\Rightarrow 3k-r\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right)={{y}_{1}}

Now, we know that point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) moves on circle, so it satisfies equation of circle:

x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}}

\Rightarrow {{\left\\{ 3h-r\left( \cos {{\theta }_{1}}+\cos {{\theta }_{2}} \right) \right\\}}^{2}}+{{\left\\{ 3k-r\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right) \right\\}}^{2}}={{r}^{2}}

\Rightarrow {{\left\\{ h-\dfrac{r}{3}\left( \cos {{\theta }_{1}}+\cos {{\theta }_{2}} \right) \right\\}}^{2}}+{{\left\\{ k-\dfrac{r}{3}\left( \sin {{\theta }_{1}}+\sin {{\theta }_{2}} \right) \right\\}}^{2}}=\dfrac{{{r}^{2}}}{9}

Now if we consider formula:

tan(θ1θ2)=tanθ1tanθ21+tanθ1.tanθ2\tan \left( {{\theta }_{1}}-{{\theta }_{2}} \right)=\dfrac{\tan {{\theta }_{1}}-\tan {{\theta }_{2}}}{1+\tan {{\theta }_{1}}.\tan {{\theta }_{2}}}

By equation (ii), tan(θ1θ2)\tan \left( {{\theta }_{1}}-{{\theta }_{2}} \right)\to \infty

θ1θ2=90\Rightarrow {{\theta }_{1}}-{{\theta }_{2}}=90{}^\circ

θ1=θ2+90\Rightarrow {{\theta }_{1}}={{\theta }_{2}}+90{}^\circ

θ2=θ190\Rightarrow {{\theta }_{2}}={{\theta }_{1}}-90{}^\circ

So, {{\left\\{ h-\dfrac{r}{3}\left( \cos {{\theta }_{1}}+\cos \left( {{\theta }_{1}}-90{}^\circ \right) \right) \right\\}}^{2}}+{{\left\\{ k-\dfrac{r}{3}\left( \sin {{\theta }_{1}}+\sin \left( {{\theta }_{1}}-90{}^\circ \right) \right) \right\\}}^{2}}=\dfrac{{{r}^{2}}}{9}

\Rightarrow {{\left\\{ h-\dfrac{r}{3}\left( \cos {{\theta }_{1}}+\sin {{\theta }_{1}} \right) \right\\}}^{2}}+{{\left\\{ k-\dfrac{r}{3}\left( \sin {{\theta }_{1}}-\cos {{\theta }_{1}} \right) \right\\}}^{2}}=\dfrac{{{r}^{2}}}{9}

Replace hxh\to x and kyk\to y,

\Rightarrow {{\left\\{ x-\dfrac{r}{3}\left( \cos {{\theta }_{1}}+\sin {{\theta }_{1}} \right) \right\\}}^{2}}+{{\left\\{ y-\dfrac{r}{3}\left( \sin {{\theta }_{1}}-\cos {{\theta }_{1}} \right) \right\\}}^{2}}=\dfrac{{{r}^{2}}}{9}

This is the equation of the circle. So, the locus of the centroid of ΔPAB\Delta PAB is a circle.

So, the correct answer is “Option (b)”.

Note: In this question, point PP is moving in a circle and ABAB are fixed. So we have to eliminate the variables x1{{x}_{1}} and y1{{y}_{1}}. But sometimes ABAB will not be fixed, point PP will be fixed. Then we will have to eliminate θ1{{\theta }_{1}} and θ2{{\theta }_{2}}, and x1{{x}_{1}} and y1{{y}_{1}} will be in the equation. So, students should take care of which is fixed, and which one is variable.