Solveeit Logo

Question

Question: Let $a_n=1-\frac{2n^2}{1+\sqrt{1+4n^4}}, n=1,2,3,...$ Then the value of $\sqrt{a_1}+2\sqrt{a_2}+....

Let

an=12n21+1+4n4,n=1,2,3,...a_n=1-\frac{2n^2}{1+\sqrt{1+4n^4}}, n=1,2,3,...

Then the value of

a1+2a2+...+20a20\sqrt{a_1}+2\sqrt{a_2}+...+20\sqrt{a_{20}}

is ?

Answer

14

Explanation

Solution

The problem asks for the sum of a series involving ana_n. First, we need to simplify the expression for ana_n.

The given expression for ana_n is: an=12n21+1+4n4a_n = 1-\frac{2n^2}{1+\sqrt{1+4n^4}}

To simplify, we can rationalize the denominator of the fraction 2n21+1+4n4\frac{2n^2}{1+\sqrt{1+4n^4}}. Multiply the numerator and denominator by the conjugate of the denominator, which is (11+4n4)(1-\sqrt{1+4n^4}): 2n21+1+4n4=2n21+1+4n4×11+4n411+4n4\frac{2n^2}{1+\sqrt{1+4n^4}} = \frac{2n^2}{1+\sqrt{1+4n^4}} \times \frac{1-\sqrt{1+4n^4}}{1-\sqrt{1+4n^4}} =2n2(11+4n4)12(1+4n4)2= \frac{2n^2(1-\sqrt{1+4n^4})}{1^2 - (\sqrt{1+4n^4})^2} =2n2(11+4n4)1(1+4n4)= \frac{2n^2(1-\sqrt{1+4n^4})}{1 - (1+4n^4)} =2n2(11+4n4)4n4= \frac{2n^2(1-\sqrt{1+4n^4})}{-4n^4} =11+4n42n2= \frac{1-\sqrt{1+4n^4}}{-2n^2} =1+4n412n2= \frac{\sqrt{1+4n^4}-1}{2n^2}

Now, substitute this back into the expression for ana_n: an=1(1+4n412n2)a_n = 1 - \left( \frac{\sqrt{1+4n^4}-1}{2n^2} \right) an=2n2(1+4n41)2n2a_n = \frac{2n^2 - (\sqrt{1+4n^4}-1)}{2n^2} an=2n21+4n4+12n2a_n = \frac{2n^2 - \sqrt{1+4n^4} + 1}{2n^2}

Next, we need to find an\sqrt{a_n}. Let's simplify the numerator: 2n2+11+4n42n^2+1 - \sqrt{1+4n^4}. We use the denesting formula for square roots: X±Y=X+X2Y2±XX2Y2\sqrt{X \pm \sqrt{Y}} = \sqrt{\frac{X+\sqrt{X^2-Y}}{2}} \pm \sqrt{\frac{X-\sqrt{X^2-Y}}{2}}. Here, X=2n2+1X = 2n^2+1 and Y=1+4n4Y = 1+4n^4. Calculate X2YX^2-Y: X2Y=(2n2+1)2(1+4n4)X^2-Y = (2n^2+1)^2 - (1+4n^4) X2Y=(4n4+4n2+1)(1+4n4)X^2-Y = (4n^4+4n^2+1) - (1+4n^4) X2Y=4n2X^2-Y = 4n^2 So, X2Y=4n2=2n\sqrt{X^2-Y} = \sqrt{4n^2} = 2n (since nn is a positive integer, 2n>02n > 0).

Now, apply the denesting formula to the numerator 2n2+11+4n4\sqrt{2n^2+1 - \sqrt{1+4n^4}}: 2n2+11+4n4=(2n2+1)+2n2(2n2+1)2n2\sqrt{2n^2+1 - \sqrt{1+4n^4}} = \sqrt{\frac{(2n^2+1) + 2n}{2}} - \sqrt{\frac{(2n^2+1) - 2n}{2}} =2n2+2n+122n22n+12= \sqrt{\frac{2n^2+2n+1}{2}} - \sqrt{\frac{2n^2-2n+1}{2}}

So, an\sqrt{a_n} becomes: an=2n2+2n+122n22n+122n2\sqrt{a_n} = \frac{\sqrt{\frac{2n^2+2n+1}{2}} - \sqrt{\frac{2n^2-2n+1}{2}}}{\sqrt{2n^2}} an=2n2+2n+122n22n+12n2\sqrt{a_n} = \frac{\frac{\sqrt{2n^2+2n+1}}{\sqrt{2}} - \frac{\sqrt{2n^2-2n+1}}{\sqrt{2}}}{n\sqrt{2}} an=2n2+2n+12n22n+12n\sqrt{a_n} = \frac{\sqrt{2n^2+2n+1} - \sqrt{2n^2-2n+1}}{2n}

This is the simplified form of an\sqrt{a_n}. Now we need to evaluate the sum S=a1+2a2+...+20a20S = \sqrt{a_1}+2\sqrt{a_2}+...+20\sqrt{a_{20}}. The general term in the sum is kakk\sqrt{a_k}. So, kak=k(2k2+2k+12k22k+12k)k\sqrt{a_k} = k \left( \frac{\sqrt{2k^2+2k+1} - \sqrt{2k^2-2k+1}}{2k} \right) kak=12(2k2+2k+12k22k+1)k\sqrt{a_k} = \frac{1}{2} \left( \sqrt{2k^2+2k+1} - \sqrt{2k^2-2k+1} \right)

Let f(k)=2k22k+1f(k) = \sqrt{2k^2-2k+1}. Then f(k+1)=2(k+1)22(k+1)+1=2(k2+2k+1)2k2+1=2k2+4k+22k2+1=2k2+2k+1f(k+1) = \sqrt{2(k+1)^2-2(k+1)+1} = \sqrt{2(k^2+2k+1)-2k-2+1} = \sqrt{2k^2+4k+2-2k-2+1} = \sqrt{2k^2+2k+1}. So, the term kakk\sqrt{a_k} can be written as: kak=12(f(k+1)f(k))k\sqrt{a_k} = \frac{1}{2} (f(k+1) - f(k))

This is a telescoping sum. Let's write out the terms: For k=1k=1: 1a1=12(f(2)f(1))1\sqrt{a_1} = \frac{1}{2} (f(2) - f(1)) For k=2k=2: 2a2=12(f(3)f(2))2\sqrt{a_2} = \frac{1}{2} (f(3) - f(2)) For k=3k=3: 3a3=12(f(4)f(3))3\sqrt{a_3} = \frac{1}{2} (f(4) - f(3)) ... For k=20k=20: 20a20=12(f(21)f(20))20\sqrt{a_{20}} = \frac{1}{2} (f(21) - f(20))

Summing these terms: S=k=120kak=12k=120(f(k+1)f(k))S = \sum_{k=1}^{20} k\sqrt{a_k} = \frac{1}{2} \sum_{k=1}^{20} (f(k+1) - f(k)) S=12[(f(2)f(1))+(f(3)f(2))+...+(f(21)f(20))]S = \frac{1}{2} [(f(2)-f(1)) + (f(3)-f(2)) + ... + (f(21)-f(20))] S=12[f(21)f(1)]S = \frac{1}{2} [f(21) - f(1)]

Now, we need to calculate f(1)f(1) and f(21)f(21). f(k)=2k22k+1f(k) = \sqrt{2k^2-2k+1}. For k=1k=1: f(1)=2(1)22(1)+1=22+1=1=1f(1) = \sqrt{2(1)^2-2(1)+1} = \sqrt{2-2+1} = \sqrt{1} = 1. For k=21k=21: f(21)=2(21)22(21)+1=2(441)42+1=88242+1=841f(21) = \sqrt{2(21)^2-2(21)+1} = \sqrt{2(441)-42+1} = \sqrt{882-42+1} = \sqrt{841}. We know that 202=40020^2=400, 302=90030^2=900. The last digit is 1, so it could be 21221^2 or 29229^2. 292=(301)2=90060+1=84129^2 = (30-1)^2 = 900-60+1 = 841. So, f(21)=29f(21) = 29.

Substitute these values back into the sum SS: S=12[291]S = \frac{1}{2} [29 - 1] S=12[28]S = \frac{1}{2} [28] S=14S = 14

The value of the given sum is 14.