Question
Question: Let $A_n, (n \in N)$ be a matrix of order $(2n-1) \times (2n-1)$, such that $a_{ij} = 0 \forall i \n...
Let An,(n∈N) be a matrix of order (2n−1)×(2n−1), such that aij=0∀i=j and aij=n2+i+1−2n∀i=j where aij denotes the element of ith row and jth column of An. Let Tn=(−1)n×(sum of all the elements of An). Find the value of [520200∑n=1102Tn], (greatest integer function).

2
Solution
The matrix An is of order (2n−1)×(2n−1). The elements are given by aij=0 for i=j and aij=n2+i+1−2n for i=j. This means An is a diagonal matrix. The diagonal elements are di=aii=n2+i+1−2n for i=1,2,…,2n−1.
The sum of all elements of An is the sum of its diagonal elements: Sn=∑i=12n−1(n2+i+1−2n) Sn=∑i=12n−1(n2−2n+1)+∑i=12n−1i Sn=(2n−1)(n2−2n+1)+2(2n−1)(2n−1+1) Sn=(2n−1)(n−1)2+2(2n−1)(2n) Sn=(2n−1)(n−1)2+(2n−1)n Sn=(2n−1)((n−1)2+n) Sn=(2n−1)(n2−2n+1+n) Sn=(2n−1)(n2−n+1).
We observe that n2−n+1 is a factor in the sum of cubes identity a3+b3=(a+b)(a2−ab+b2). Let a=n and b=1. Then n3+13=(n+1)(n2−n+1). Let's try to express Sn in terms of cubes. Consider n3+(n−1)3=n3+(n3−3n2+3n−1)=2n3−3n2+3n−1. Let's expand Sn=(2n−1)(n2−n+1)=2n(n2−n+1)−1(n2−n+1)=2n3−2n2+2n−n2+n−1=2n3−3n2+3n−1. Thus, Sn=n3+(n−1)3.
Tn=(−1)n×Sn=(−1)n(n3+(n−1)3).
We need to calculate ∑n=1102Tn=∑n=1102(−1)n(n3+(n−1)3). Let's write out the terms: T1=(−1)1(13+(1−1)3)=−(13+03) T2=(−1)2(23+(2−1)3)=+(23+13) T3=(−1)3(33+(3−1)3)=−(33+23) T4=(−1)4(43+(4−1)3)=+(43+33) ... T101=(−1)101(1013+(101−1)3)=−(1013+1003) T102=(−1)102(1023+(102−1)3)=+(1023+1013)
The sum is ∑n=1102Tn=−(13+03)+(23+13)−(33+23)+(43+33)−⋯−(1013+1003)+(1023+1013).
Grouping terms in pairs: T1+T2=−(13+03)+(23+13)=23−03=23. T3+T4=−(33+23)+(43+33)=43−23. T5+T6=−(53+43)+(63+53)=63−43. ... T2k−1+T2k=−((2k−1)3+(2k−2)3)+((2k)3+(2k−1)3)=(2k)3−(2k−2)3. The sum ∑n=1102Tn has 102 terms, which can be grouped into 51 pairs. ∑n=1102Tn=∑k=151(T2k−1+T2k)=∑k=151((2k)3−(2k−2)3). Let m=2k. The sum becomes ∑k=151(m3−(m−2)3) where m takes values 2,4,6,…,102. This is a telescoping sum: k=1:(23−03) k=2:(43−23) k=3:(63−43) ... k=51:(1023−1003) Summing these terms: (23−03)+(43−23)+(63−43)+⋯+(1023−1003) =−03+(23−23)+(43−43)+⋯+(1003−1003)+1023 =1023.
So, ∑n=1102Tn=1023. We need to calculate the value of [5202001023]. 1023=102×102×102. 1022=(100+2)2=10000+400+4=10404. 1023=10404×102=10404×(100+2)=1040400+10404×2=1040400+20808=1061208.
The required value is [5202001061208]. Let's perform the division: 1061208=2×520200+20808. 5202001061208=2+52020020808. Since 0<52020020808<1, the greatest integer is 2.
The value of [520200∑n=1102Tn] is 2.
Subject: Mathematics Chapter: Matrices Topic: Types of Matrices (Diagonal Matrix), Summation of Series, Greatest Integer Function
Difficulty level: Medium (Requires understanding of matrix properties, summation techniques, and recognizing patterns for telescoping sums)
Question type: Integer