Solveeit Logo

Question

Question: Let $A_n, (n \in N)$ be a matrix of order $(2n-1) \times (2n-1)$, such that $a_{ij} = 0 \forall i \n...

Let An,(nN)A_n, (n \in N) be a matrix of order (2n1)×(2n1)(2n-1) \times (2n-1), such that aij=0ija_{ij} = 0 \forall i \neq j and aij=n2+i+12ni=ja_{ij} = n^2 + i + 1 - 2n \forall i = j where aija_{ij} denotes the element of ithi^{th} row and jthj^{th} column of AnA_n. Let Tn=(1)n×T_n = (-1)^n \times (sum of all the elements of AnA_n). Find the value of [n=1102Tn520200]\left[\frac{\sum_{n=1}^{102} T_n}{520200}\right], (greatest integer function).

Answer

2

Explanation

Solution

The matrix AnA_n is of order (2n1)×(2n1)(2n-1) \times (2n-1). The elements are given by aij=0a_{ij} = 0 for iji \neq j and aij=n2+i+12na_{ij} = n^2 + i + 1 - 2n for i=ji = j. This means AnA_n is a diagonal matrix. The diagonal elements are di=aii=n2+i+12nd_i = a_{ii} = n^2 + i + 1 - 2n for i=1,2,,2n1i = 1, 2, \dots, 2n-1.

The sum of all elements of AnA_n is the sum of its diagonal elements: Sn=i=12n1(n2+i+12n)S_n = \sum_{i=1}^{2n-1} (n^2 + i + 1 - 2n) Sn=i=12n1(n22n+1)+i=12n1iS_n = \sum_{i=1}^{2n-1} (n^2 - 2n + 1) + \sum_{i=1}^{2n-1} i Sn=(2n1)(n22n+1)+(2n1)(2n1+1)2S_n = (2n-1)(n^2 - 2n + 1) + \frac{(2n-1)(2n-1+1)}{2} Sn=(2n1)(n1)2+(2n1)(2n)2S_n = (2n-1)(n-1)^2 + \frac{(2n-1)(2n)}{2} Sn=(2n1)(n1)2+(2n1)nS_n = (2n-1)(n-1)^2 + (2n-1)n Sn=(2n1)((n1)2+n)S_n = (2n-1)((n-1)^2 + n) Sn=(2n1)(n22n+1+n)S_n = (2n-1)(n^2 - 2n + 1 + n) Sn=(2n1)(n2n+1)S_n = (2n-1)(n^2 - n + 1).

We observe that n2n+1n^2 - n + 1 is a factor in the sum of cubes identity a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2). Let a=na=n and b=1b=1. Then n3+13=(n+1)(n2n+1)n^3 + 1^3 = (n+1)(n^2 - n + 1). Let's try to express SnS_n in terms of cubes. Consider n3+(n1)3=n3+(n33n2+3n1)=2n33n2+3n1n^3 + (n-1)^3 = n^3 + (n^3 - 3n^2 + 3n - 1) = 2n^3 - 3n^2 + 3n - 1. Let's expand Sn=(2n1)(n2n+1)=2n(n2n+1)1(n2n+1)=2n32n2+2nn2+n1=2n33n2+3n1S_n = (2n-1)(n^2 - n + 1) = 2n(n^2 - n + 1) - 1(n^2 - n + 1) = 2n^3 - 2n^2 + 2n - n^2 + n - 1 = 2n^3 - 3n^2 + 3n - 1. Thus, Sn=n3+(n1)3S_n = n^3 + (n-1)^3.

Tn=(1)n×Sn=(1)n(n3+(n1)3)T_n = (-1)^n \times S_n = (-1)^n (n^3 + (n-1)^3).

We need to calculate n=1102Tn=n=1102(1)n(n3+(n1)3)\sum_{n=1}^{102} T_n = \sum_{n=1}^{102} (-1)^n (n^3 + (n-1)^3). Let's write out the terms: T1=(1)1(13+(11)3)=(13+03)T_1 = (-1)^1 (1^3 + (1-1)^3) = - (1^3 + 0^3) T2=(1)2(23+(21)3)=+(23+13)T_2 = (-1)^2 (2^3 + (2-1)^3) = + (2^3 + 1^3) T3=(1)3(33+(31)3)=(33+23)T_3 = (-1)^3 (3^3 + (3-1)^3) = - (3^3 + 2^3) T4=(1)4(43+(41)3)=+(43+33)T_4 = (-1)^4 (4^3 + (4-1)^3) = + (4^3 + 3^3) ... T101=(1)101(1013+(1011)3)=(1013+1003)T_{101} = (-1)^{101} (101^3 + (101-1)^3) = - (101^3 + 100^3) T102=(1)102(1023+(1021)3)=+(1023+1013)T_{102} = (-1)^{102} (102^3 + (102-1)^3) = + (102^3 + 101^3)

The sum is n=1102Tn=(13+03)+(23+13)(33+23)+(43+33)(1013+1003)+(1023+1013)\sum_{n=1}^{102} T_n = -(1^3 + 0^3) + (2^3 + 1^3) - (3^3 + 2^3) + (4^3 + 3^3) - \dots - (101^3 + 100^3) + (102^3 + 101^3).

Grouping terms in pairs: T1+T2=(13+03)+(23+13)=2303=23T_1+T_2 = -(1^3+0^3) + (2^3+1^3) = 2^3 - 0^3 = 2^3. T3+T4=(33+23)+(43+33)=4323T_3+T_4 = -(3^3+2^3) + (4^3+3^3) = 4^3 - 2^3. T5+T6=(53+43)+(63+53)=6343T_5+T_6 = -(5^3+4^3) + (6^3+5^3) = 6^3 - 4^3. ... T2k1+T2k=((2k1)3+(2k2)3)+((2k)3+(2k1)3)=(2k)3(2k2)3T_{2k-1}+T_{2k} = -( (2k-1)^3 + (2k-2)^3 ) + ( (2k)^3 + (2k-1)^3 ) = (2k)^3 - (2k-2)^3. The sum n=1102Tn\sum_{n=1}^{102} T_n has 102 terms, which can be grouped into 51 pairs. n=1102Tn=k=151(T2k1+T2k)=k=151((2k)3(2k2)3)\sum_{n=1}^{102} T_n = \sum_{k=1}^{51} (T_{2k-1} + T_{2k}) = \sum_{k=1}^{51} ((2k)^3 - (2k-2)^3). Let m=2km=2k. The sum becomes k=151(m3(m2)3)\sum_{k=1}^{51} (m^3 - (m-2)^3) where mm takes values 2,4,6,,1022, 4, 6, \dots, 102. This is a telescoping sum: k=1:(2303)k=1: (2^3 - 0^3) k=2:(4323)k=2: (4^3 - 2^3) k=3:(6343)k=3: (6^3 - 4^3) ... k=51:(10231003)k=51: (102^3 - 100^3) Summing these terms: (2303)+(4323)+(6343)++(10231003)(2^3 - 0^3) + (4^3 - 2^3) + (6^3 - 4^3) + \dots + (102^3 - 100^3) =03+(2323)+(4343)++(10031003)+1023= -0^3 + (2^3 - 2^3) + (4^3 - 4^3) + \dots + (100^3 - 100^3) + 102^3 =1023= 102^3.

So, n=1102Tn=1023\sum_{n=1}^{102} T_n = 102^3. We need to calculate the value of [1023520200]\left[\frac{102^3}{520200}\right]. 1023=102×102×102102^3 = 102 \times 102 \times 102. 1022=(100+2)2=10000+400+4=10404102^2 = (100+2)^2 = 10000 + 400 + 4 = 10404. 1023=10404×102=10404×(100+2)=1040400+10404×2=1040400+20808=1061208102^3 = 10404 \times 102 = 10404 \times (100+2) = 1040400 + 10404 \times 2 = 1040400 + 20808 = 1061208.

The required value is [1061208520200]\left[\frac{1061208}{520200}\right]. Let's perform the division: 1061208=2×520200+208081061208 = 2 \times 520200 + 20808. 1061208520200=2+20808520200\frac{1061208}{520200} = 2 + \frac{20808}{520200}. Since 0<20808520200<10 < \frac{20808}{520200} < 1, the greatest integer is 2.

The value of [n=1102Tn520200]\left[\frac{\sum_{n=1}^{102} T_n}{520200}\right] is 2.

Subject: Mathematics Chapter: Matrices Topic: Types of Matrices (Diagonal Matrix), Summation of Series, Greatest Integer Function

Difficulty level: Medium (Requires understanding of matrix properties, summation techniques, and recognizing patterns for telescoping sums)

Question type: Integer