Solveeit Logo

Question

Question: Let \(a_{n}\) be the *n*<sup>th</sup> term of the G.P. of positive numbers. Let \(\sum_{n = 1}^{100}...

Let ana_{n} be the nth term of the G.P. of positive numbers. Let n=1100a2n=α\sum_{n = 1}^{100}{a_{2n} = \alpha} and n=1100a2n1=β\sum_{n = 1}^{100}{a_{2n - 1} = \beta}, such that αβ, then the common ratio is

A

αβ\frac{\alpha}{\beta}

B

βα\frac{\beta}{\alpha}

C

αβ\sqrt{\frac{\alpha}{\beta}}

D

βα\frac{\beta}{\alpha}

Answer

αβ\frac{\alpha}{\beta}

Explanation

Solution

Let x be the first term and y, the common ratio of the G.P.

Then,α=n=1100a2n=a2+a4+a6+....+a200\alpha = \sum_{n = 1}^{100}{a_{2n} = a_{2} + a_{4} + a_{6} + .... + a_{200}}and β=n=1100a2n1=a1+a3+a5+......+a199\beta = \sum_{n = 1}^{100}{a_{2n - 1} = a_{1} + a_{3} + a_{5} + ...... + a_{199}}

α=xy+xy3+xy5+.....+xy199=xy1(y2)1001y2=xy(1y2001y2)β=x+xy2+xy4+.....+xy198=x1(y2)1001y2=x(1y2001y2)\alpha = xy + xy^{3} + xy^{5} + ..... + xy^{199} = xy\frac{1 - (y^{2})^{100}}{1 - y^{2}} = xy\left( \frac{1 - y^{200}}{1 - y^{2}} \right)\beta = x + xy^{2} + xy^{4} + ..... + xy^{198} = x \cdot \frac{1 - (y^{2})^{100}}{1 - y^{2}} = x \cdot \left( \frac{1 - y^{200}}{1 - y^{2}} \right)αβ=y\frac{\alpha}{\beta} = y. Thus, common ratio =αβ= \frac{\alpha}{\beta}