Solveeit Logo

Question

Question: Let $a_k = \frac{k}{(k-1)^{4/3} + k^{4/3} + (k+1)^{4/3}}$ and $S_n = \sum_{k=1}^{n} a_k$, then...

Let ak=k(k1)4/3+k4/3+(k+1)4/3a_k = \frac{k}{(k-1)^{4/3} + k^{4/3} + (k+1)^{4/3}} and Sn=k=1nakS_n = \sum_{k=1}^{n} a_k, then

A

S26>174S_{26} > \frac{17}{4}

B

S26<174S_{26} < \frac{17}{4}

C

S999<50S_{999} < 50

D

S999>50S_{999} > 50

Answer

Options (B) and (C)

Explanation

Solution

We wish to study

ak=k(k1)4/3+k4/3+(k+1)4/3a_k=\frac{k}{(k-1)^{4/3}+k^{4/3}+(k+1)^{4/3}}

and then

Sn=k=1nak.S_n=\sum_{k=1}^n a_k.

A key observation is that for large kk the dominant behavior is given by the powers of kk. Notice that

(k1)4/3k4/3,k4/3k4/3,(k+1)4/3k4/3.(k-1)^{4/3}\sim k^{4/3},\quad k^{4/3}\sim k^{4/3},\quad (k+1)^{4/3}\sim k^{4/3}.

In fact, the denominator behaves approximately as

(k1)4/3+k4/3+(k+1)4/33k4/3for large k.(k-1)^{4/3}+k^{4/3}+(k+1)^{4/3}\approx 3k^{4/3}\quad\text{for large }k.

Thus for large kk we have

akk3k4/3=13k1/3.a_k\approx\frac{k}{3k^{4/3}}=\frac{1}{3\,k^{1/3}}.

Once you have the asymptotic approximation

Snk=1n13k1/3,S_n\approx\sum_{k=1}^n \frac{1}{3\,k^{1/3}},

it is natural to use an integral to estimate the sum. In particular,

k=1n13k1/3131nx1/3dx.\sum_{k=1}^{n} \frac{1}{3\,k^{1/3}}\approx \frac{1}{3}\int_{1}^{n}x^{-1/3}\,dx.

Since

x1/3dx=32x2/3+C,\int x^{-1/3}\,dx=\frac{3}{2}x^{2/3}+C,

we get

Sn1332(n2/31)=n2/312.S_n\approx \frac{1}{3}\cdot\frac{3}{2}\Bigl(n^{2/3}-1\Bigr)=\frac{n^{2/3}-1}{2}.

Now let’s apply this to the two cases:

  1. For n=26n=26:

We estimate

S26262/312.S_{26}\approx\frac{26^{2/3}-1}{2}.

Since 271/3=327^{1/3}=3 and 261/326^{1/3} is slightly less (approximately 2.962.96), we have

262/3(2.96)28.77.26^{2/3}\approx(2.96)^2\approx 8.77.

Then,

S268.7712=7.7723.885.S_{26}\approx\frac{8.77-1}{2}=\frac{7.77}{2}\approx3.885.

Now, 174=4.25\frac{17}{4}=4.25. Thus S263.89<4.25S_{26} \approx 3.89<4.25. Therefore option (B) is true.

  1. For n=999n=999:

Similarly,

S9999992/312.S_{999}\approx\frac{999^{2/3}-1}{2}.

Note that 10001/3=101000^{1/3}=10 so 9991/3999^{1/3} is very nearly 10 and hence 9992/3999^{2/3} is nearly 102=10010^2=100. In fact, one may estimate

S99910012=992=49.5.S_{999}\approx\frac{100-1}{2}=\frac{99}{2}=49.5.

This shows that S999<50S_{999}<50 so option (C) is true.

Thus our conclusions are:

  • (B) S26<174S_{26}<\frac{17}{4}
  • (C) S999<50S_{999}<50

Minimal Core Explanation

  1. Asymptotic behavior: For large kk, approximate ak13k1/3.a_k \sim \frac{1}{3\,k^{1/3}}.
  2. Integral estimate: Sn131nx1/3dx=n2/312.S_n\approx\frac{1}{3}\int_1^n x^{-1/3}\,dx=\frac{n^{2/3}-1}{2}.
  3. Apply for n=26n=26: 262/3123.89<4.25=174\frac{26^{2/3}-1}{2}\approx 3.89 < 4.25=\frac{17}{4}.
  4. Apply for n=999n=999: 9992/31249.5<50\frac{999^{2/3}-1}{2}\approx 49.5 < 50.