Solveeit Logo

Question

Question: Let $a_1, a_2, a_3, ...$ be terms of an A.P.. If $\frac{a_1+a_2+…+a_p}{a_1+a_2+…+a_q}=\frac{p^2}{q^2...

Let a1,a2,a3,...a_1, a_2, a_3, ... be terms of an A.P.. If a1+a2++apa1+a2++aq=p2q2\frac{a_1+a_2+…+a_p}{a_1+a_2+…+a_q}=\frac{p^2}{q^2}, where pqp \neq q, then a6a21\frac{a_6}{a_{21}} is equal to

A

11/41

B

21/6

C

6/21

D

41/11

Answer

11/41

Explanation

Solution

Let aa be the first term and dd be the common difference of the Arithmetic Progression (A.P.). The sum of the first nn terms of an A.P. is given by the formula: Sn=n2[2a+(n1)d]S_n = \frac{n}{2}[2a + (n-1)d] We are given the relation: a1+a2++apa1+a2++aq=p2q2\frac{a_1 + a_2 + \dots + a_p}{a_1 + a_2 + \dots + a_q} = \frac{p^2}{q^2} Substituting the sum formula, we get: p2[2a+(p1)d]q2[2a+(q1)d]=p2q2\frac{\frac{p}{2}[2a + (p-1)d]}{\frac{q}{2}[2a + (q-1)d]} = \frac{p^2}{q^2} p[2a+(p1)d]q[2a+(q1)d]=p2q2\frac{p[2a + (p-1)d]}{q[2a + (q-1)d]} = \frac{p^2}{q^2} Since pqp \neq q, we can assume p0p \neq 0 and q0q \neq 0. We can simplify the equation by cancelling pp from the numerator and p2p^2 from the right side, and qq from the denominator and q2q^2 from the right side: 2a+(p1)d2a+(q1)d=pq\frac{2a + (p-1)d}{2a + (q-1)d} = \frac{p}{q} Cross-multiplying gives: q[2a+(p1)d]=p[2a+(q1)d]q[2a + (p-1)d] = p[2a + (q-1)d] 2aq+q(p1)d=2ap+p(q1)d2aq + q(p-1)d = 2ap + p(q-1)d 2aq+pqdqd=2ap+pqdpd2aq + pqd - qd = 2ap + pqd - pd Subtracting pqdpqd from both sides: 2aqqd=2appd2aq - qd = 2ap - pd Rearranging the terms to group aa and dd: 2aq2ap=qdpd2aq - 2ap = qd - pd 2a(qp)=d(qp)2a(q - p) = d(q - p) Since pqp \neq q, we know that qp0q - p \neq 0. Therefore, we can divide both sides by (qp)(q - p): 2a=d2a = d This establishes a relationship between the first term and the common difference.

Now we need to find the ratio a6a21\frac{a_6}{a_{21}}. The nn-th term of an A.P. is given by an=a+(n1)da_n = a + (n-1)d. So, the 6th term is a6=a+(61)d=a+5da_6 = a + (6-1)d = a + 5d. And the 21st term is a21=a+(211)d=a+20da_{21} = a + (21-1)d = a + 20d.

Substitute the relation d=2ad = 2a into the expressions for a6a_6 and a21a_{21}: a6=a+5(2a)=a+10a=11aa_6 = a + 5(2a) = a + 10a = 11a a21=a+20(2a)=a+40a=41aa_{21} = a + 20(2a) = a + 40a = 41a Now, we can find the ratio: a6a21=11a41a\frac{a_6}{a_{21}} = \frac{11a}{41a} Assuming a0a \neq 0 (otherwise all terms would be zero, making the original ratio undefined), we can cancel aa: a6a21=1141\frac{a_6}{a_{21}} = \frac{11}{41}

Alternatively, we can use the property that if SpSq=p2q2\frac{S_p}{S_q} = \frac{p^2}{q^2} for an A.P., then aman=2m12n1\frac{a_m}{a_n} = \frac{2m-1}{2n-1}. In this case, we need a6a21\frac{a_6}{a_{21}}, so m=6m=6 and n=21n=21. a6a21=2(6)12(21)1=121421=1141\frac{a_6}{a_{21}} = \frac{2(6)-1}{2(21)-1} = \frac{12-1}{42-1} = \frac{11}{41}