Solveeit Logo

Question

Question: Let $a_1, a_2, a_3, ...$ be an A.P. If $\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4$, then $4a_2$ is equ...

Let a1,a2,a3,...a_1, a_2, a_3, ... be an A.P. If r=1ar2r=4\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4, then 4a24a_2 is equal to _____.

Answer

16

Explanation

Solution

Let the arithmetic progression be denoted by ar=a+(r1)da_r = a + (r-1)d, where a=a1a = a_1 is the first term and dd is the common difference. We are given the sum of an infinite series: r=1ar2r=4\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4 Substituting the expression for ara_r: r=1a+(r1)d2r=4\sum_{r=1}^{\infty} \frac{a + (r-1)d}{2^r} = 4 We can split this sum into two parts: r=1a2r+r=1(r1)d2r=4\sum_{r=1}^{\infty} \frac{a}{2^r} + \sum_{r=1}^{\infty} \frac{(r-1)d}{2^r} = 4 ar=1(12)r+dr=1r12r=4a \sum_{r=1}^{\infty} \left(\frac{1}{2}\right)^r + d \sum_{r=1}^{\infty} \frac{r-1}{2^r} = 4 The first part is a geometric series with first term 1/21/2 and common ratio 1/21/2. The sum is: r=1(12)r=12112=1212=1\sum_{r=1}^{\infty} \left(\frac{1}{2}\right)^r = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1 So, the first term of the equation becomes a×1=aa \times 1 = a.

The second part is dr=1r12rd \sum_{r=1}^{\infty} \frac{r-1}{2^r}. Let's evaluate the sum T=r=1r12rT = \sum_{r=1}^{\infty} \frac{r-1}{2^r}: T=1121+2122+3123+4124+T = \frac{1-1}{2^1} + \frac{2-1}{2^2} + \frac{3-1}{2^3} + \frac{4-1}{2^4} + \dots T=02+14+28+316+T = \frac{0}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots T=14+28+316+T = \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots This is an arithmetico-geometric series. Multiply TT by the common ratio 1/21/2: 12T=18+216+332+\frac{1}{2}T = \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \dots Subtracting 12T\frac{1}{2}T from TT: T12T=(14+28+316+)(18+216+332+)T - \frac{1}{2}T = \left(\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \dots\right) - \left(\frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \dots\right) 12T=14+(2818)+(316216)+(432332)+\frac{1}{2}T = \frac{1}{4} + \left(\frac{2}{8} - \frac{1}{8}\right) + \left(\frac{3}{16} - \frac{2}{16}\right) + \left(\frac{4}{32} - \frac{3}{32}\right) + \dots 12T=14+18+116+132+\frac{1}{2}T = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots This is a geometric series with first term 1/41/4 and common ratio 1/21/2. 12T=14112=1412=12\frac{1}{2}T = \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2} So, T=1T = 1.

Substituting the sums back into the equation: a(1)+d(1)=4a(1) + d(1) = 4 a+d=4a + d = 4 The second term of the AP is a2=a+(21)d=a+da_2 = a + (2-1)d = a+d. Therefore, a2=4a_2 = 4.

The question asks for the value of 4a24a_2. 4a2=4×4=164a_2 = 4 \times 4 = 16

Alternatively, using the formula for the sum of an arithmetico-geometric series n=1[A+(n1)D]xn1=A1x+Dx(1x)2\sum_{n=1}^{\infty} [A + (n-1)D]x^{n-1} = \frac{A}{1-x} + \frac{Dx}{(1-x)^2} for x<1|x|<1. The given sum is S=r=1a+(r1)d2r=12r=1[a+(r1)d](12)r1S = \sum_{r=1}^{\infty} \frac{a + (r-1)d}{2^r} = \frac{1}{2} \sum_{r=1}^{\infty} [a + (r-1)d] \left(\frac{1}{2}\right)^{r-1}. Here, A=aA=a, D=dD=d, and x=1/2x=1/2. The sum inside the bracket is a11/2+d(1/2)(11/2)2=a1/2+d/2(1/2)2=2a+d/21/4=2a+2d\frac{a}{1-1/2} + \frac{d(1/2)}{(1-1/2)^2} = \frac{a}{1/2} + \frac{d/2}{(1/2)^2} = 2a + \frac{d/2}{1/4} = 2a + 2d. So, S=12(2a+2d)=a+dS = \frac{1}{2}(2a+2d) = a+d. Given S=4S=4, so a+d=4a+d=4. Since a2=a+da_2 = a+d, we have a2=4a_2=4. Thus, 4a2=4×4=164a_2 = 4 \times 4 = 16.

The sum of the given arithmetico-geometric series r=1ar2r\sum_{r=1}^{\infty} \frac{a_r}{2^r} where ara_r is an AP, evaluates to a1+da_1 + d, where a1a_1 is the first term and dd is the common difference of the AP. Given this sum is 4, we have a1+d=4a_1 + d = 4. The second term of the AP is a2=a1+da_2 = a_1 + d. Therefore, a2=4a_2 = 4. The value of 4a24a_2 is 4×4=164 \times 4 = 16.