Question
Question: Let $a_1, a_2, a_3,...$ be a G.P. of increasing positive terms. If $a_1a_3 = 28$ and $a_2 + a_4 = 29...
Let a1,a2,a3,... be a G.P. of increasing positive terms. If a1a3=28 and a2+a4=29, then a6 is equal to:

148697−812
Solution
We start by writing the terms of the GP as
a1=a,a2=ar,a3=ar2,a4=ar3,…
Step 1. From the condition
a1a3=a⋅(ar2)=a2r2=28,
we get
(ar)^2 = 28 \quad\Longrightarrow\quad ar = 2\sqrt7 \quad \text{(since a>0,, r>0)}.
Step 2. The second given condition is
a2+a4=ar+ar3=ar(1+r2)=29.
Using ar=27 from Step 1, we have
27(1+r2)=29⟹1+r2=2729.
Thus,
r2=2729−1=2729−27.
Step 3. We need to compute the sixth term:
a6=ar5=(ar)r4=27⋅r4.
But r4=(r2)2. So,
r4=(2729−27)2=4⋅7(29−27)2=28(29−27)2.
Thus,
a6=27⋅28(29−27)2=147(29−27)2.
Step 4. To simplify further, expand (29−27)2:
(29−27)2=292−2⋅29⋅27+(27)2=841−1167+28=869−1167.
Therefore,
a6=147(869−1167)=148697−116⋅7=148697−812.