Solveeit Logo

Question

Question: Let $a_1, a_2, a_3,...$ be a G.P. of increasing positive terms. If $a_1a_3 = 28$ and $a_2 + a_4 = 29...

Let a1,a2,a3,...a_1, a_2, a_3,... be a G.P. of increasing positive terms. If a1a3=28a_1a_3 = 28 and a2+a4=29a_2 + a_4 = 29, then a6a_6 is equal to:

Answer

869781214\frac{869\sqrt7 - 812}{14}

Explanation

Solution

We start by writing the terms of the GP as

a1=a,a2=ar,a3=ar2,a4=ar3,a_1 = a, a_2 = ar, a_3 = ar^2, a_4 = ar^3, \ldots

Step 1. From the condition

a1a3=a(ar2)=a2r2=28a_1 a_3 = a \cdot (ar^2) = a^2 r^2 = 28,

we get

(ar)^2 = 28 \quad\Longrightarrow\quad ar = 2\sqrt7 \quad \text{(since a>0,, r>0)}.

Step 2. The second given condition is

a2+a4=ar+ar3=ar(1+r2)=29a_2 + a_4 = ar + ar^3 = ar(1 + r^2) = 29.

Using ar=27ar=2\sqrt7 from Step 1, we have

27(1+r2)=291+r2=29272\sqrt7 (1 + r^2) = 29 \quad\Longrightarrow\quad 1 + r^2 = \frac{29}{2\sqrt7}.

Thus,

r2=29271=292727r^2 = \frac{29}{2\sqrt7} - 1 = \frac{29 - 2\sqrt7}{2\sqrt7}.

Step 3. We need to compute the sixth term:

a6=ar5=(ar)r4=27r4a_6 = ar^5 = (ar)\,r^4 = 2\sqrt7 \cdot r^4.

But r4=(r2)2r^4 = (r^2)^2. So,

r4=(292727)2=(2927)247=(2927)228r^4 = \left(\frac{29-2\sqrt7}{2\sqrt7}\right)^2 = \frac{(29-2\sqrt7)^2}{4\cdot7} = \frac{(29-2\sqrt7)^2}{28}.

Thus,

a6=27(2927)228=7(2927)214a_6 = 2\sqrt7 \cdot \frac{(29-2\sqrt7)^2}{28} = \frac{\sqrt7\,(29-2\sqrt7)^2}{14}.

Step 4. To simplify further, expand (2927)2(29-2\sqrt7)^2:

(2927)2=29222927+(27)2=8411167+28=8691167(29-2\sqrt7)^2 = 29^2 - 2\cdot 29\cdot2\sqrt7 + (2\sqrt7)^2 = 841 - 116\sqrt7 + 28 = 869 - 116\sqrt7.

Therefore,

a6=7(8691167)14=8697116714=869781214a_6 = \frac{\sqrt7\,(869-116\sqrt7)}{14} = \frac{869\sqrt7 - 116\cdot7}{14} = \frac{869\sqrt7 - 812}{14}.