Solveeit Logo

Question

Question: Let $a_1, a_2, a_3... a_n (n \in N)$ is a sequence such that $a_1 = a_2 = 2$ and $\frac{2a_{n-1}a_n}...

Let a1,a2,a3...an(nN)a_1, a_2, a_3... a_n (n \in N) is a sequence such that a1=a2=2a_1 = a_2 = 2 and 2an1anan1an+1an2=n3n,n=2,3,4,...\frac{2a_{n-1}a_n}{a_{n-1}a_{n+1}-a_n^2} = n^3 - n, \forall n = 2, 3, 4,..., find the value of S16\lfloor\frac{S}{16}\rfloor, where S=k=22020ak+1akS = \sum_{k=2}^{2020} \frac{a_{k+1}}{a_k} and (.(\lfloor.\rfloor denotes G.I.F.)

Answer

189

Explanation

Solution

The given recurrence relation is 2an1anan1an+1an2=n3n\frac{2a_{n-1}a_n}{a_{n-1}a_{n+1}-a_n^2} = n^3 - n.

We can rewrite this as: an1an+1an22an1an=1n3n\frac{a_{n-1}a_{n+1}-a_n^2}{2a_{n-1}a_n} = \frac{1}{n^3 - n}

Divide the numerator by an1ana_{n-1}a_n: an+12anan2an1=1n(n21)\frac{a_{n+1}}{2a_n} - \frac{a_n}{2a_{n-1}} = \frac{1}{n(n^2-1)} an+12anan2an1=1(n1)n(n+1)\frac{a_{n+1}}{2a_n} - \frac{a_n}{2a_{n-1}} = \frac{1}{(n-1)n(n+1)}

Let bn=an2an1b_n = \frac{a_n}{2a_{n-1}}. Then the recurrence relation becomes: bn+1bn=1(n1)n(n+1)b_{n+1} - b_n = \frac{1}{(n-1)n(n+1)} for n=2,3,4,...n = 2, 3, 4, ...

First, let's find the value of b2b_2. Given a1=a2=2a_1 = a_2 = 2. b2=a22a1=22×2=12b_2 = \frac{a_2}{2a_1} = \frac{2}{2 \times 2} = \frac{1}{2}.

Now, we need to find a general expression for bNb_N. We can sum the differences bk+1bkb_{k+1} - b_k from k=2k=2 to N1N-1: k=2N1(bk+1bk)=k=2N11(k1)k(k+1)\sum_{k=2}^{N-1} (b_{k+1} - b_k) = \sum_{k=2}^{N-1} \frac{1}{(k-1)k(k+1)} This is a telescoping sum on the left side: bNb2b_N - b_2.

For the sum on the right side, we use partial fraction decomposition: 1(k1)k(k+1)=Ak1+Bk+Ck+1\frac{1}{(k-1)k(k+1)} = \frac{A}{k-1} + \frac{B}{k} + \frac{C}{k+1} Multiplying by (k1)k(k+1)(k-1)k(k+1): 1=Ak(k+1)+B(k1)(k+1)+C(k1)k1 = Ak(k+1) + B(k-1)(k+1) + C(k-1)k Setting k=1    1=A(1)(2)    A=1/2k=1 \implies 1 = A(1)(2) \implies A = 1/2. Setting k=0    1=B(1)(1)    B=1k=0 \implies 1 = B(-1)(1) \implies B = -1. Setting k=1    1=C(2)(1)    C=1/2k=-1 \implies 1 = C(-2)(-1) \implies C = 1/2. So, 1(k1)k(k+1)=12(k1)1k+12(k+1)\frac{1}{(k-1)k(k+1)} = \frac{1}{2(k-1)} - \frac{1}{k} + \frac{1}{2(k+1)}. This can be rewritten as: 12(1k12k+1k+1)=12[(1k11k)(1k1k+1)]\frac{1}{2} \left( \frac{1}{k-1} - \frac{2}{k} + \frac{1}{k+1} \right) = \frac{1}{2} \left[ \left( \frac{1}{k-1} - \frac{1}{k} \right) - \left( \frac{1}{k} - \frac{1}{k+1} \right) \right]. Let f(k)=1k11kf(k) = \frac{1}{k-1} - \frac{1}{k}. Then the term is 12[f(k)f(k+1)]\frac{1}{2} [f(k) - f(k+1)]. The sum is k=2N112[f(k)f(k+1)]=12[f(2)f(N)]\sum_{k=2}^{N-1} \frac{1}{2} [f(k) - f(k+1)] = \frac{1}{2} [f(2) - f(N)]. f(2)=1112=12f(2) = \frac{1}{1} - \frac{1}{2} = \frac{1}{2}. f(N)=1N11Nf(N) = \frac{1}{N-1} - \frac{1}{N}. So, k=2N11(k1)k(k+1)=12[12(1N11N)]\sum_{k=2}^{N-1} \frac{1}{(k-1)k(k+1)} = \frac{1}{2} \left[ \frac{1}{2} - \left( \frac{1}{N-1} - \frac{1}{N} \right) \right] =1412(N1)N= \frac{1}{4} - \frac{1}{2(N-1)N}.

Now, substitute this back into bNb2b_N - b_2: bN12=1412N(N1)b_N - \frac{1}{2} = \frac{1}{4} - \frac{1}{2N(N-1)} bN=12+1412N(N1)b_N = \frac{1}{2} + \frac{1}{4} - \frac{1}{2N(N-1)} bN=3412N(N1)b_N = \frac{3}{4} - \frac{1}{2N(N-1)}.

We need to find S=k=22020ak+1akS = \sum_{k=2}^{2020} \frac{a_{k+1}}{a_k}. Recall that bk+1=ak+12akb_{k+1} = \frac{a_{k+1}}{2a_k}, so ak+1ak=2bk+1\frac{a_{k+1}}{a_k} = 2b_{k+1}. Using the formula for bNb_N with N=k+1N=k+1: 2bk+1=2(3412(k+1)((k+1)1))2b_{k+1} = 2 \left( \frac{3}{4} - \frac{1}{2(k+1)((k+1)-1)} \right) 2bk+1=2(3412k(k+1))2b_{k+1} = 2 \left( \frac{3}{4} - \frac{1}{2k(k+1)} \right) ak+1ak=321k(k+1)\frac{a_{k+1}}{a_k} = \frac{3}{2} - \frac{1}{k(k+1)}.

Now, substitute this into the sum SS: S=k=22020(321k(k+1))S = \sum_{k=2}^{2020} \left( \frac{3}{2} - \frac{1}{k(k+1)} \right). The sum has 20202+1=20192020 - 2 + 1 = 2019 terms. S=k=2202032k=220201k(k+1)S = \sum_{k=2}^{2020} \frac{3}{2} - \sum_{k=2}^{2020} \frac{1}{k(k+1)} S=2019×32k=22020(1k1k+1)S = 2019 \times \frac{3}{2} - \sum_{k=2}^{2020} \left( \frac{1}{k} - \frac{1}{k+1} \right).

The first part is 2019×32=605722019 \times \frac{3}{2} = \frac{6057}{2}. The second sum is a telescoping sum: k=22020(1k1k+1)=(1213)+(1314)++(1202012021)\sum_{k=2}^{2020} \left( \frac{1}{k} - \frac{1}{k+1} \right) = \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \dots + \left( \frac{1}{2020} - \frac{1}{2021} \right) =1212021= \frac{1}{2} - \frac{1}{2021}.

Substitute these back into the expression for SS: S=60572(1212021)S = \frac{6057}{2} - \left( \frac{1}{2} - \frac{1}{2021} \right) S=6057212+12021S = \frac{6057}{2} - \frac{1}{2} + \frac{1}{2021} S=60562+12021S = \frac{6056}{2} + \frac{1}{2021} S=3028+12021S = 3028 + \frac{1}{2021}.

Finally, we need to find S16\lfloor\frac{S}{16}\rfloor. S16=116(3028+12021)\frac{S}{16} = \frac{1}{16} \left( 3028 + \frac{1}{2021} \right) S16=302816+116×2021\frac{S}{16} = \frac{3028}{16} + \frac{1}{16 \times 2021}.

Let's calculate 302816\frac{3028}{16}: 3028÷16=189.253028 \div 16 = 189.25.

So, S16=189.25+116×2021\frac{S}{16} = 189.25 + \frac{1}{16 \times 2021}. The term 116×2021\frac{1}{16 \times 2021} is a very small positive number: 16×2021=3233616 \times 2021 = 32336. So, 116×2021=1323360.00003\frac{1}{16 \times 2021} = \frac{1}{32336} \approx 0.00003.

Therefore, S16=189.25+a very small positive fraction\frac{S}{16} = 189.25 + \text{a very small positive fraction}. S16=189.25+0.00003=189.25003=189\lfloor\frac{S}{16}\rfloor = \lfloor 189.25 + 0.00003 \rfloor = \lfloor 189.25003 \rfloor = 189.

The final answer is 189\boxed{189}.

Explanation of the solution:

  1. Transform the recurrence relation: The given relation was manipulated to isolate a difference of terms, bn+1bn=1(n1)n(n+1)b_{n+1} - b_n = \frac{1}{(n-1)n(n+1)}, by defining bn=an2an1b_n = \frac{a_n}{2a_{n-1}}.
  2. Calculate initial term: b2b_2 was found using a1=a2=2a_1=a_2=2.
  3. Sum the differences: The expression for bn+1bnb_{n+1}-b_n was summed from n=2n=2 to N1N-1 to find bNb_N using a telescoping sum. Partial fraction decomposition was used to simplify the general term of the sum.
  4. Express sum terms in bkb_k: The terms of the sum S=k=22020ak+1akS = \sum_{k=2}^{2020} \frac{a_{k+1}}{a_k} were expressed in terms of bk+1b_{k+1} as ak+1ak=2bk+1\frac{a_{k+1}}{a_k} = 2b_{k+1}.
  5. Evaluate the sum S: The sum SS was then evaluated by substituting the derived expression for 2bk+12b_{k+1} and performing another telescoping sum.
  6. Calculate the final value: The value of SS was divided by 16, and the floor function was applied to get the final integer result.