Solveeit Logo

Question

Question: Let $a_0 = 1$ and for all $n \ge 1$, let $a_n$ be the smaller root of the equation $4^{-n}x^2 - x + ...

Let a0=1a_0 = 1 and for all n1n \ge 1, let ana_n be the smaller root of the equation 4nx2x+an1=04^{-n}x^2 - x + a_{n-1} = 0. Given that ana_n approaches a value LL as nn goes to infinity, then the value of LL is

A

π24\frac{\pi^2}{4}

B

π23\frac{\pi^2}{3}

C

π2\frac{\pi}{2}

D

3π4\frac{3\pi}{4}

Answer

π24\frac{\pi^2}{4}

Explanation

Solution

The problem defines a sequence ana_n recursively.

Given a0=1a_0 = 1, and for n1n \ge 1, ana_n is the smaller root of the equation 4nx2x+an1=04^{-n}x^2 - x + a_{n-1} = 0.

We need to find the limit L=limnanL = \lim_{n \to \infty} a_n.

The quadratic equation is 4nx2x+an1=04^{-n}x^2 - x + a_{n-1} = 0.

The roots are given by the quadratic formula x=B±B24AC2Ax = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}:

x=1±(1)24(4n)(an1)2(4n)x = \frac{1 \pm \sqrt{(-1)^2 - 4(4^{-n})(a_{n-1})}}{2(4^{-n})}

x=1±141nan124nx = \frac{1 \pm \sqrt{1 - 4^{1-n}a_{n-1}}}{2 \cdot 4^{-n}}

Since ana_n is the smaller root, we have:

an=1141nan124na_n = \frac{1 - \sqrt{1 - 4^{1-n}a_{n-1}}}{2 \cdot 4^{-n}}

Let's calculate the first few terms of the sequence:

For n=1n=1: The equation is 41x2x+a0=04^{-1}x^2 - x + a_0 = 0.

Given a0=1a_0 = 1, we have 14x2x+1=0\frac{1}{4}x^2 - x + 1 = 0.

Multiplying by 4, we get x24x+4=0x^2 - 4x + 4 = 0.

This is (x2)2=0(x-2)^2 = 0, which has a single root x=2x=2.

So, a1=2a_1 = 2.

For n=2n=2: The equation is 42x2x+a1=04^{-2}x^2 - x + a_1 = 0.

Given a1=2a_1 = 2, we have 116x2x+2=0\frac{1}{16}x^2 - x + 2 = 0.

Multiplying by 16, we get x216x+32=0x^2 - 16x + 32 = 0.

The roots are x=16±(16)24(1)(32)2(1)=16±2561282=16±1282x = \frac{16 \pm \sqrt{(-16)^2 - 4(1)(32)}}{2(1)} = \frac{16 \pm \sqrt{256 - 128}}{2} = \frac{16 \pm \sqrt{128}}{2}.

Since 128=642=82\sqrt{128} = \sqrt{64 \cdot 2} = 8\sqrt{2}, the roots are x=16±822=8±42x = \frac{16 \pm 8\sqrt{2}}{2} = 8 \pm 4\sqrt{2}.

a2a_2 is the smaller root, so a2=842a_2 = 8 - 4\sqrt{2}.

Let's try to find a pattern or a transformation.

Consider the expression for ana_n:

an=1141nan124na_n = \frac{1 - \sqrt{1 - 4^{1-n}a_{n-1}}}{2 \cdot 4^{-n}}

This form reminds us of the half-angle formula for sine: 2sin2(θ/2)=1cosθ2\sin^2(\theta/2) = 1 - \cos\theta.

Let 41nan1=sin2θn4^{1-n}a_{n-1} = \sin^2\theta_n for some angle θn\theta_n.

Then an=11sin2θn24n=1cosθn24na_n = \frac{1 - \sqrt{1 - \sin^2\theta_n}}{2 \cdot 4^{-n}} = \frac{1 - |\cos\theta_n|}{2 \cdot 4^{-n}}.

For the smaller root, we typically choose the positive square root for 1x\sqrt{1-x} when xx is small and positive, so 1sin2θn=cosθn\sqrt{1-\sin^2\theta_n} = \cos\theta_n (assuming θn[0,π/2]\theta_n \in [0, \pi/2]).

Then an=1cosθn24n=2sin2(θn/2)24n=4nsin2(θn/2)a_n = \frac{1 - \cos\theta_n}{2 \cdot 4^{-n}} = \frac{2\sin^2(\theta_n/2)}{2 \cdot 4^{-n}} = 4^n \sin^2(\theta_n/2).

From 41nan1=sin2θn4^{1-n}a_{n-1} = \sin^2\theta_n, we have an1=4n14sin2θn=4n1sin2θna_{n-1} = \frac{4^{n-1}}{4} \sin^2\theta_n = 4^{n-1} \sin^2\theta_n.

So, we have the relations:

an=4nsin2(θn/2)a_n = 4^n \sin^2(\theta_n/2)

an1=4n1sin2θna_{n-1} = 4^{n-1} \sin^2\theta_n

Let's try to make the argument of sine consistent. Let's define an=4nsin2ϕna_n = 4^n \sin^2 \phi_n.

Then an1=4n1sin2ϕn1a_{n-1} = 4^{n-1} \sin^2 \phi_{n-1}.

Substitute this into the relation 41nan1=sin2θn4^{1-n}a_{n-1} = \sin^2\theta_n:

41n(4n1sin2ϕn1)=sin2θn4^{1-n} (4^{n-1} \sin^2 \phi_{n-1}) = \sin^2\theta_n

41n+n1sin2ϕn1=sin2θn4^{1-n+n-1} \sin^2 \phi_{n-1} = \sin^2\theta_n

40sin2ϕn1=sin2θn4^0 \sin^2 \phi_{n-1} = \sin^2\theta_n

sin2ϕn1=sin2θn\sin^2 \phi_{n-1} = \sin^2\theta_n.

Since we are dealing with a sequence that seems to be increasing and positive, we can assume ϕn\phi_n and θn\theta_n are in [0,π/2][0, \pi/2].

So, sinϕn1=sinθn\sin\phi_{n-1} = \sin\theta_n, which implies ϕn1=θn\phi_{n-1} = \theta_n.

Now substitute θn=ϕn1\theta_n = \phi_{n-1} into an=4nsin2(θn/2)a_n = 4^n \sin^2(\theta_n/2):

an=4nsin2(ϕn1/2)a_n = 4^n \sin^2(\phi_{n-1}/2).

But we also defined an=4nsin2ϕna_n = 4^n \sin^2 \phi_n.

Therefore, sin2ϕn=sin2(ϕn1/2)\sin^2 \phi_n = \sin^2(\phi_{n-1}/2).

This implies ϕn=ϕn1/2\phi_n = \phi_{n-1}/2.

This is a simple geometric progression for ϕn\phi_n.

ϕn=ϕ0/2n\phi_n = \phi_0 / 2^n.

Now we need to find ϕ0\phi_0.

We have a0=1a_0 = 1.

The definition an=4nsin2ϕna_n = 4^n \sin^2 \phi_n is for n1n \ge 1.

Let's use a0=1a_0 = 1 and a1=2a_1 = 2.

From a1=41sin2ϕ1=4sin2ϕ1=2a_1 = 4^1 \sin^2 \phi_1 = 4 \sin^2 \phi_1 = 2.

So sin2ϕ1=1/2\sin^2 \phi_1 = 1/2.

sinϕ1=1/2\sin \phi_1 = 1/\sqrt{2}.

Since we can choose ϕ1[0,π/2]\phi_1 \in [0, \pi/2], we have ϕ1=π/4\phi_1 = \pi/4.

Now using ϕn=ϕ0/2n\phi_n = \phi_0 / 2^n:

For n=1n=1, ϕ1=ϕ0/21\phi_1 = \phi_0 / 2^1.

π/4=ϕ0/2\pi/4 = \phi_0 / 2.

So ϕ0=π/2\phi_0 = \pi/2.

Now we can write ana_n in terms of ϕ0\phi_0:

an=4nsin2ϕn=4nsin2(ϕ0/2n)=4nsin2(π/22n)=4nsin2(π2n+1)a_n = 4^n \sin^2 \phi_n = 4^n \sin^2 (\phi_0 / 2^n) = 4^n \sin^2 (\frac{\pi/2}{2^n}) = 4^n \sin^2 (\frac{\pi}{2^{n+1}}).

We need to find the limit L=limnanL = \lim_{n \to \infty} a_n.

L=limn4nsin2(π2n+1)L = \lim_{n \to \infty} 4^n \sin^2 (\frac{\pi}{2^{n+1}})

L=limn(2n)2sin2(π2n+1)L = \lim_{n \to \infty} (2^n)^2 \sin^2 (\frac{\pi}{2^{n+1}})

L=limn(2nsin(π2n+1))2L = \lim_{n \to \infty} \left( 2^n \sin (\frac{\pi}{2^{n+1}}) \right)^2

Let x=π2n+1x = \frac{\pi}{2^{n+1}}. As nn \to \infty, x0x \to 0.

We know that limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.

So, sinxx\sin x \approx x for small xx.

L=limn(2nπ2n+1)2L = \lim_{n \to \infty} \left( 2^n \cdot \frac{\pi}{2^{n+1}} \right)^2

L=limn(2nπ2n21)2L = \lim_{n \to \infty} \left( \frac{2^n \cdot \pi}{2^n \cdot 2^1} \right)^2

L=limn(π2)2L = \lim_{n \to \infty} \left( \frac{\pi}{2} \right)^2

L=π24L = \frac{\pi^2}{4}.

Final check:

If an=π24a_n = \frac{\pi^2}{4}, then anL=π24a_n \to L = \frac{\pi^2}{4}.

The condition for roots to be real is 141nan101 - 4^{1-n}a_{n-1} \ge 0.

As nn \to \infty, 41nan10L=04^{1-n}a_{n-1} \to 0 \cdot L = 0. So 1001-0 \ge 0, which is true.

The values are positive, so our choice of sinϕn\sin\phi_n and cosθn\cos\theta_n being positive is consistent.

The value of LL is π24\frac{\pi^2}{4}.