Question
Question: Let A(6,8), B(10 cos $\alpha$, −10 sin $\alpha$) and C(−10 sin $\alpha$, 10cos $\alpha$), be the ver...
Let A(6,8), B(10 cos α, −10 sin α) and C(−10 sin α, 10cos α), be the vertices of a triangle. If L(a, 9) and G(h, k) be its orthocenter and centroid respectively, then (5a - 3h + 6k + 100 sin 2α) is equal to _____.

Answer
145
Explanation
Solution
The origin O(0,0) is the circumcenter because OA=OB=OC=10. For a circumcenter at the origin, the orthocenter H satisfies OH=OA+OB+OC. Equating y-coordinates of L(a,9): 9=8−10sinα+10cosα⇒1=10(cosα−sinα). Squaring gives 1−sin(2α)=1/100⇒100sin(2α)=99. Equating x-coordinates: a=6+10(cosα−sinα)=6+1=7. Centroid G(h,k) is the average of vertices: h=(6+1)/3=7/3 and k=(8+1)/3=3. The expression 5a−3h+6k+100sin2α=5(7)−3(7/3)+6(3)+99=35−7+18+99=46+99=145.
