Solveeit Logo

Question

Question: Let A(6,8), B(10 cos $\alpha$, −10 sin $\alpha$) and C(−10 sin $\alpha$, 10cos $\alpha$), be the ver...

Let A(6,8), B(10 cos α\alpha, −10 sin α\alpha) and C(−10 sin α\alpha, 10cos α\alpha), be the vertices of a triangle. If L(a, 9) and G(h, k) be its orthocenter and centroid respectively, then (5a - 3h + 6k + 100 sin 2α\alpha) is equal to _____.

Answer

145

Explanation

Solution

The origin O(0,0) is the circumcenter because OA=OB=OC=10. For a circumcenter at the origin, the orthocenter H satisfies OH=OA+OB+OC\vec{OH} = \vec{OA} + \vec{OB} + \vec{OC}. Equating y-coordinates of L(a,9): 9=810sinα+10cosα1=10(cosαsinα)9 = 8 - 10\sin\alpha + 10\cos\alpha \Rightarrow 1 = 10(\cos\alpha - \sin\alpha). Squaring gives 1sin(2α)=1/100100sin(2α)=991 - \sin(2\alpha) = 1/100 \Rightarrow 100\sin(2\alpha) = 99. Equating x-coordinates: a=6+10(cosαsinα)=6+1=7a = 6 + 10(\cos\alpha - \sin\alpha) = 6+1=7. Centroid G(h,k) is the average of vertices: h=(6+1)/3=7/3h = (6+1)/3 = 7/3 and k=(8+1)/3=3k = (8+1)/3 = 3. The expression 5a3h+6k+100sin2α=5(7)3(7/3)+6(3)+99=357+18+99=46+99=1455a - 3h + 6k + 100 \sin 2\alpha = 5(7) - 3(7/3) + 6(3) + 99 = 35 - 7 + 18 + 99 = 46 + 99 = 145.