Solveeit Logo

Question

Mathematics Question on Area between Two Curves

Let
A1=(x,y):x<=y2,x+2y8A1 = {(x,y):|x| <= y^2,|x|+2y≤8}
and
A2=(x,y):x+yk.A2 = {(x,y) : |x| +|y|≤k}.
If 27(Area A1) = 5(Area A2), then k is equal to :

Answer

The correct answer is 6

Fig.

Required area (above x -axis)
A1=248(8x2x)dxA_1 = 2 \int_{4}^{8} (8 - \frac{x}{2} - \sqrt{x}) \, dx
=2(1616483/2)=403= 2 \left(16 - \frac{16}{4} - \frac{8}{3/2}\right) = \frac{40}{3}
and
A2=4(12.k2)=2k2A_2 = 4 \left(\frac{1}{2}. k^2\right) = 2k^2

Fig.

27403=5(2k2)\therefore 27 \cdot \frac{40}{3} = 5 \cdot (2k^2)
⇒ k = 6

*A1

Fig.

Which tends to infinity if not mentioned above x -axis