Question
Mathematics Question on Limits
Let a1, a2,..., an be fixed real numbers and define a function f(x)=(x-a1)(x-a2)...(x-an).
What is limx→a1 f(x)?
For some a ≠ a1, a2 .....an, Compute limx→a f(x).
Answer
The given function is f(x) = (x − a1) ( x − a2)... ( x − an)
limx→a1 f(x)= limx→a1 [(x-a1)(x − a2).....(x − an)]
=[limx→a1 (x − a1) ][limx→a1(x − a2)]..... [limx→a1 (x-an)]
=(a1-a1)(a1-a2)....(a1 -an) = 0
∴limx→a1 f(x)=0
Now, limx→a f(x)= limx→a[(x − a1)(x-a2)...(x-an)]
= [limx→(x−a1)][limx→a (x-a2)]...limx→a(x-an)]
=(a-a1) (a-a2)....(a-an)
∴limx→a f(x)=(a-a1)(a-a2)...(a-an)