Solveeit Logo

Question

Mathematics Question on Geometric Progression

Let A1, A2, A3, … be an increasing geometric progression of positive real numbers. If A1A3A5A7 = 11296\frac {1}{1296} and A2 + A4 = 736\frac {7}{36} then, the value of A6 + A8 + A10 is equal to

A

33

B

37

C

43

D

47

Answer

43

Explanation

Solution

A4r3.A4r.A4r.A4r3=11296\frac {A_4}{r^3}. \frac {A_4}{r} . A_4r . A_4r^3 = \frac {1}{1296}

A4=16A_4 = \frac 16

A2=73616A_2 = \frac {7}{36} - \frac 16

A2=136A_2= \frac {1}{36}
So, A6+A8+A10=1+6+36A_6 + A_8 + A_{10} = 1 + 6 + 36
=43= 43

So, the correct option is (C): 4343