Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

Let A1, A2, A3, A4,........, A8 be the vertices of the regular octagons that lie on the circle of radius 2. Let p be a point on the circle and let PAi denote the distance between the point P and Ai for i = 1,2,3,....,8. If P varies over the circle, then the maximum value of the product is PA1.PA2..........PA8, is

Answer

regular octagons that lie on the circle
According to the question, Ai are 8th root of 28 & let P be 2eiα.
Now, z8 – 28 = (z – A1) (z – A2) ……… (z – A8)
So, Put z = 2eiα
⇒ 28ei8α – 28 = (2eiα – A1) (2eiα – A2) (2eiα – A3) ….. (2eiα – A8)
⇒ 28 |ei8α – 1| = |(2eiα – A1) (2eiα – A2) (2eiα – A3) ….. (2eiα – A8)|
⇒ 28 |ei4α – e–i4α | = |(2eiα – A1) (2eiα – A2) (2eiα – A3) ….. (2eiα – A8)|
⇒ 29 |sin4α| = |(2eiα – A1) (2eiα – A2) (2eiα – A3) ….. (2eiα – A8)|
So, from this we get that :
Maximum value of the PA1.PA2 …… PA8 = 29
Therefore, the correct answer is 29 = 512.