Question
Question: Let $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\}$ and $B = \{(x, y) \in \mathbb...
Let A={(x,y)∈R×R:∣x+y∣≥3} and B={(x,y)∈R×R:∣x∣+∣y∣≤3}. If C={(x,y)∈A∩B:x=0 or y=0}, then ∑(x,y)∈C∣x+y∣ is:
Answer
12
Explanation
Solution
Solution Explanation:
For points on the x-axis (y=0):
- In B, ∣x∣≤3 and in A, ∣x+0∣=∣x∣≥3. Thus, x must be ±3.
For points on the y-axis (x=0):
- In B, ∣y∣≤3 and in A, ∣0+y∣=∣y∣≥3. Thus, y must be ±3.
So,
C={(3,0),(−3,0),(0,3),(0,−3)}.Calculating ∣x+y∣ for each:
- (3,0):∣3+0∣=3
- (−3,0):∣−3+0∣=3
- (0,3):∣0+3∣=3
- (0,−3):∣0−3∣=3
Thus,
(x,y)∈C∑∣x+y∣=3+3+3+3=12.