Solveeit Logo

Question

Question: Let $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\}$ and $B = \{(x, y) \in \mathbb...

Let A={(x,y)R×R:x+y3}A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\} and B={(x,y)R×R:x+y3}B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| \leq 3\}. If C={(x,y)AB:x=0 or y=0}C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\}, then (x,y)Cx+y\sum_{(x,y)\in C} |x + y| is:

Answer

12

Explanation

Solution

Solution Explanation:

For points on the xx-axis (y=0y=0):

  • In BB, x3|x| \leq 3 and in AA, x+0=x3|x+0|=|x|\geq 3. Thus, xx must be ±3\pm3.

For points on the yy-axis (x=0x=0):

  • In BB, y3|y| \leq 3 and in AA, 0+y=y3|0+y|=|y|\geq 3. Thus, yy must be ±3\pm3.

So,

C={(3,0),(3,0),(0,3),(0,3)}.C = \{(3,0),\,(-3,0),\,(0,3),\,(0,-3)\}.

Calculating x+y|x+y| for each:

  • (3,0):3+0=3(3,0): |3+0|=3
  • (3,0):3+0=3(-3,0): |-3+0|=3
  • (0,3):0+3=3(0,3): |0+3|=3
  • (0,3):03=3(0,-3): |0-3|=3

Thus,

(x,y)Cx+y=3+3+3+3=12.\sum_{(x,y)\in C}|x+y| = 3+3+3+3 = 12.