Solveeit Logo

Question

Question: Let $A = \{x \mid x^3 + x^2 - px + q = 0, p, q, \in R\}$ and $B = \{x \mid x^2 - qx + 2 = 0, q \in R...

Let A={xx3+x2px+q=0,p,q,R}A = \{x \mid x^3 + x^2 - px + q = 0, p, q, \in R\} and B={xx2qx+2=0,qR}B = \{x \mid x^2 - qx + 2 = 0, q \in R\} be the sets. If n(AB)=2n(A \cap B) = 2 and x0(AB)x_0 \in (A - B), then find the value of pq+x0|p - q + x_0|.

Answer

3

Explanation

Solution

Let the two common roots (since n(A ∩ B) = 2) be α\alpha and β\beta, which are the roots of the quadratic

x2qx+2=0.x^2 - qx + 2 = 0.

Then:

α+β=q,αβ=2.\alpha + \beta = q,\quad \alpha\beta = 2.

The cubic equation

x3+x2px+q=0x^3 + x^2 - px + q = 0

has roots α\alpha, β\beta, and γ\gamma (with x0=γBx_0 = \gamma \notin B). Expressing the cubic as

(xα)(xβ)(xγ)=x3(α+β+γ)x2+(αβ+αγ+βγ)xαβγ,(x-\alpha)(x-\beta)(x-\gamma) = x^3 - (\alpha+\beta+\gamma)x^2 + (\alpha\beta + \alpha\gamma + \beta\gamma)x - \alpha\beta\gamma,

comparing coefficients we obtain:

  1. Coefficient of x2x^2:
(α+β+γ)=1α+β+γ=1.-(\alpha+\beta+\gamma) = 1 \quad \Rightarrow \quad \alpha+\beta+\gamma = -1.

Thus,

γ=1(α+β)=1q.\gamma = -1 - (\alpha+\beta) = -1 - q.
  1. Constant term:
αβγ=qαβγ=q.-\alpha\beta\gamma = q \quad \Rightarrow \quad \alpha\beta\gamma = -q.

Since αβ=2\alpha\beta = 2, we have:

2γ=qγ=q2.2\gamma = -q \quad \Rightarrow \quad \gamma = -\frac{q}{2}.

Equate the two expressions for γ\gamma:

1q=q2.-1 - q = -\frac{q}{2}.

Multiplying by 2:

22q=q2q+q=2q=2q=2.-2 - 2q = -q \quad \Rightarrow \quad -2q + q = 2 \quad \Rightarrow \quad -q = 2 \quad \Rightarrow \quad q = -2.

Now, substitute q=2q = -2 into γ=1q\gamma = -1 - q:

γ=1(2)=1.\gamma = -1 - (-2) = 1.

Since x0ABx_0 \in A - B, we have x0=γ=1x_0 = \gamma = 1.

Now, using the expression pq+x0|p - q + x_0|:

  • Find pp using the coefficient of xx. The sum of the products of the roots two at a time is: αβ+αγ+βγ=p.\alpha\beta + \alpha\gamma + \beta\gamma = -p. Substitute known values: αβ=2andα+β=q=2,γ=1,\alpha\beta = 2 \quad \text{and} \quad \alpha + \beta = q = -2, \quad \gamma = 1, so, 2+1(α+β)=2+(2)=0p=0p=0.2 + 1 \cdot (\alpha+\beta) = 2 + (-2) = 0 \quad \Rightarrow \quad -p = 0 \quad \Rightarrow \quad p = 0.

Finally, compute:

pq+x0=0(2)+1=2+1=3.|p - q + x_0| = |0 - (-2) + 1| = |2 + 1| = 3.