Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let a vertical tower ABAB have its end AA on the level ground. Let CC be the mid-point of ABAB and PP be a point on the ground such that AP=2ABAP = 2AB. If BPC=β\angle BPC = \beta , then tan β\beta is equal to :

A

14\frac{1}{4}

B

29\frac{2}{9}

C

49\frac{4}{9}

D

67\frac{6}{7}

Answer

29\frac{2}{9}

Explanation

Solution

tanθ=14\tan \theta=\frac{1}{4}
tan(θ+β)=12\tan \left(\theta+\beta\right)=\frac{1}{2}
14+tanβ114tanβ=12\therefore \frac{\frac{1}{4}+\tan\beta}{1-\frac{1}{4}\tan\beta}=\frac{1}{2}
Solving tan β=29\beta=\frac{2}{9}