Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let a unit vector OP^\widehat{ OP } make angles α,β,γ\alpha, \beta, \gamma with the positive directions of the co-ordinate axes OXOX, OY,OZOY , OZ respectively, where β(0,π2)\beta \in\left(0, \frac{\pi}{2}\right) If OP^\widehat{ OP } is perpendicular to the plane through points (1,2(1,2, 3),(2,3,4)3),(2,3,4) and (1,5,7)(1,5,7), then which one of the following is true ?

A

α(0,π2)\alpha \in\left(0, \frac{\pi}{2}\right) and γ(0,π2)\gamma \in\left(0, \frac{\pi}{2}\right)

B

α(π2,π)\alpha \in\left(\frac{\pi}{2}, \pi\right) and γ(π2,π)\gamma \in\left(\frac{\pi}{2}, \pi\right)

C

α(π2,π)\alpha \in\left(\frac{\pi}{2}, \pi\right) and γ(0,π2)\gamma \in\left(0, \frac{\pi}{2}\right)

D

α(0,π2)\alpha \in\left(0, \frac{\pi}{2}\right) annd γ(π2,π)\gamma \in\left(\frac{\pi}{2}, \pi\right)

Answer

α(π2,π)\alpha \in\left(\frac{\pi}{2}, \pi\right) and γ(π2,π)\gamma \in\left(\frac{\pi}{2}, \pi\right)

Explanation

Solution

Equation of plane :-
∣∣​x−110​y−213​z−314​∣∣​=0
⇒[x−1]−4[y−2]+3[z−3]=0
⇒x−4y+3z=2
D.R's of normal of plane <1,−4,3>
D.C's of
⟨±26​1​,∓26​4​,±26​3​⟩
cosβ=26​4​
cosα=26​−1​2π​<α<π
cosγ=26​−3​2π​<γ<π