Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a unit vector which makes an angle of 6060^\circ with 2i^+2j^k^2\hat{i} + 2\hat{j} - \hat{k} and an angle of 4545^\circ with i^k^\hat{i} - \hat{k} be C\vec{C}. Then C+(12i^+132j^23k^)\vec{C} + \left( -\frac{1}{2} \hat{i} + \frac{1}{3\sqrt{2}} \hat{j} - \frac{\sqrt{2}}{3} \hat{k} \right) is:

A

23i^+23j^+(12+223)k^\frac{\sqrt{2}}{3} \hat{i} + \frac{\sqrt{2}}{3} \hat{j} + \left( \frac{1}{2} + \frac{2\sqrt{2}}{3} \right) \hat{k}

B

23i^+132j^12k^\frac{\sqrt{2}}{3} \hat{i} + \frac{1}{3\sqrt{2}} \hat{j} - \frac{1}{2} \hat{k}

C

(13+12)i^+(13132)j^+(13+23)k^\left( \frac{1}{\sqrt{3}} + \frac{1}{2} \right) \hat{i} + \left( \frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{2}} \right) \hat{j} + \left( \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{3} \right) \hat{k}

D

23i^12k^\frac{\sqrt{2}}{3} \hat{i} - \frac{1}{2} \hat{k}

Answer

23i^12k^\frac{\sqrt{2}}{3} \hat{i} - \frac{1}{2} \hat{k}

Explanation

Solution

Express C\vec{C} as a Unit Vector:
Let C=C1i+C2j+C3k\vec{C} = C_1\vec{i} + C_2\vec{j} + C_3\vec{k} such that:
C12+C22+C32=1.C_1^2 + C_2^2 + C_3^2 = 1.

Using the Angle Condition with 2i+2jk2\vec{i} + 2\vec{j} - \vec{k}:
The dot product C(2i+2jk)\vec{C} \cdot (2\vec{i} + 2\vec{j} - \vec{k}) is given by:
C(2i+2jk)=C2i+2jkcos60.\vec{C} \cdot (2\vec{i} + 2\vec{j} - \vec{k}) = |\vec{C}||2\vec{i} + 2\vec{j} - \vec{k}|\cos 60^\circ.

Since C\vec{C} is a unit vector: 2C1+2C2C3=32.2C_1 + 2C_2 - C_3 = \frac{3}{2}.

Using the Angle Condition with ik\vec{i} - \vec{k}:
The dot product C(ik)\vec{C} \cdot (\vec{i} - \vec{k}) is given by:
C(ik)=Cikcos45.\vec{C} \cdot (\vec{i} - \vec{k}) = |\vec{C}||\vec{i} - \vec{k}|\cos 45^\circ.

Simplifying gives: C1C3=1.C_1 - C_3 = 1.

Solving the Equations:
From C1C3=1C_1 - C_3 = 1 and 2C1+2C2C3=322C_1 + 2C_2 - C_3 = \frac{3}{2}, we find: C1=23,C2=132,C3=2312.C_1 = \frac{\sqrt{2}}{3}, \quad C_2 = -\frac{1}{3\sqrt{2}}, \quad C_3 = \frac{\sqrt{2}}{3} - \frac{1}{2}.

Vector Addition:
Adding C\vec{C} to (12i+132j23k)\left(\frac{1}{2}\vec{i} + \frac{1}{3\sqrt{2}}\vec{j} - \frac{\sqrt{2}}{3}\vec{k}\right):

C+(12i+132j23k)=23i12k.\vec{C} + \left(\frac{1}{2}\vec{i} + \frac{1}{3\sqrt{2}}\vec{j} - \frac{\sqrt{2}}{3}\vec{k}\right) = \frac{\sqrt{2}}{3}\vec{i} - \frac{1}{2}\vec{k}.