Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a unit vector u^=xi^+yj^+zk^\hat{u} = x\hat{i} + y\hat{j} + z\hat{k} make angles π2,π3\frac{\pi}{2}, \frac{\pi}{3}, and 2π3\frac{2\pi}{3} with the vectors 12i^+12k^\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}, 12j^+12k^\frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}, and 12i^+12j^\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} respectively. If v=12i^+12j^+12k^\vec{v} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}, then u^v2|\hat{u} - \vec{v}|^2 is equal to

A

112\frac{11}{2}

B

52\frac{5}{2}

C

9

D

7

Answer

52\frac{5}{2}

Explanation

Solution

Given that u=xi^+yj^+zk^\vec{u} = x\hat{i} + y\hat{j} + z\hat{k} is a unit vector, it satisfies: x2+y2+z2=1x^2 + y^2 + z^2 = 1
Step 1. Using the angle conditions:
- The angle between u\vec{u} and i^2+j^2\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} is π2\frac{\pi}{2}:
u(i^2+j^2)=0    x2+y2=0\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} \right) = 0 \implies \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = 0
x+y=0x + y = 0 ---(1)
- The angle between u\vec{u} and i^2+j^+k^2\frac{\hat{i}}{\sqrt{2}} + \hat{j} + \frac{\hat{k}}{\sqrt{2}} is π3\frac{\pi}{3}:
u(i^2+j^+k^2)=12    x2+y+z2=12\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \hat{j} + \frac{\hat{k}}{\sqrt{2}} \right) = \frac{1}{2} \implies \frac{x}{\sqrt{2}} + y + \frac{z}{\sqrt{2}} = \frac{1}{2}
x+2y+z=22x + \sqrt{2}y + z = \frac{\sqrt{2}}{2}
- The angle between u\vec{u} and i^2+j^2+k^\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} + \hat{k} is π2\frac{\pi}{2}:
u(i^2+j^2+k^)=0    x2+y2+z=0\vec{u} \cdot \left( \frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}} + \hat{k} \right) = 0 \implies \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} + z = 0
x+y+2z=0x + y + \sqrt{2}z = 0
Step 2. Solving the system of equations:** From equations (1), (2), and (3):
- Substitute z=xz = -x in (2):
x+2yx=22    y=12x + \sqrt{2}y - x = \frac{\sqrt{2}}{2} \implies y = \frac{1}{\sqrt{2}}
- Substitute y=12y = \frac{1}{\sqrt{2}} and z=xz = -x in (3):
x+12+2(x)=0    x=122,z=122x + \frac{1}{\sqrt{2}} + \sqrt{2}(-x) = 0 \implies x = -\frac{1}{2\sqrt{2}}, \, z = \frac{1}{2\sqrt{2}}

Step 3. Calculate uv2|\vec{u} - \vec{v}|^2:
uv2=(x12)2+(y12)2+(z12)2|\vec{u} - \vec{v}|^2 = \left( x - \frac{1}{\sqrt{2}} \right)^2 + \left( y - \frac{1}{\sqrt{2}} \right)^2 + \left( z - \frac{1}{\sqrt{2}} \right)^2
Substituting x=122,y=12,z=122x = -\frac{1}{2\sqrt{2}}, \, y = \frac{1}{\sqrt{2}}, \, z = \frac{1}{2\sqrt{2}}:
uv2=52|\vec{u} - \vec{v}|^2 = \frac{5}{2}
The Correct answer is :52\frac{5}{2}.