Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : -4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to

A

11013\frac{110}{13}

B

13213\frac{132}{13}

C

14213\frac{142}{13}

D

15113\frac{151}{13}

Answer

13213\frac{132}{13}

Explanation

Solution

The correct answer is (B) :13213\frac{132}{13}
L1 : 2x + 5y = 10
L2 : – 4x + 3y = 12
Solving L1 and L2 we get
C(1513,3213)C≡(\frac{−15}{13},\frac{32}{13})
Now, Let
A(x1,13(12+4x1))A(x_1,\frac{1}{3}(12+4x_1))
and
B(x2,15(102x2))B(x_2,\frac{1}{5}(10−2x_2))
3x1+x24=2∴\frac{3x_1+x_2}{4}=2
and
(12+4x1)+102x254=3\frac{(12+4x_1)+\frac{10−2x_2}{5}}{4}=3
So, 3x1 + x2 = 8 and 10 x1 – x2 = – 5
So,(x1,x2)=(313,9513)So, (x1,x2)=(\frac{3}{13},\frac{95}{13})
A=(313,5613)A=(\frac{3}{13},\frac{56}{13})
and
B=(9513,1213)B=(\frac{95}{13},\frac{−12}{13})

=12(313(4413)5613(11013)+1(2860169))=|\frac{1}{2}(\frac{3}{13}(\frac{−44}{13})\frac{−56}{13}(\frac{110}{13})+1(\frac{2860}{169}))|

=13213sq.units=\frac{132}{13} sq. units