Solveeit Logo

Question

Question: Let a total charge 2Q be distributed in a sphere of radius R, with the charge density given by p(r) ...

Let a total charge 2Q be distributed in a sphere of radius R, with the charge density given by p(r) = kr, where r is the distance from the centre two charges A and B of –Q each are placed on diametrically opposite points, at equal distance a form the center. If A and B do not experience force, then:
A. a=3R214 B. a=R3 C. a=814R D. a=214R \begin{aligned} & A.\text{ }a=\dfrac{3R}{{{2}^{\dfrac{1}{4}}}} \\\ & B.\text{ }a=\dfrac{R}{\sqrt{3}} \\\ & C.\text{ }a={{8}^{-\dfrac{1}{4}}}R \\\ & D.\text{ }a={{2}^{-\dfrac{1}{4}}}R \\\ \end{aligned}

Explanation

Solution

In order to find solution of this question force on A due to B must be equal to force on A due to sphere S to do so we have to find electric field on AB in order to do it we have to draw gauss’s surface inside a sphere S with radius r.
Formula used: E.dA=Qinε0\oint{\overrightarrow{E}}.d\overrightarrow{A}=\dfrac{{{Q}_{in}}}{{{\varepsilon }_{0}}}
F=kq1q2r2F=\dfrac{k{{q}_{1}}{{q}_{2}}}{{{r}^{2}}}

Complete answer:
In order to find a solution and equilibrium condition force on A due to B is equal to force on A due to S since A and B are at equal distance and have equal charge Q.
FAB=FAS......(1){{F}_{AB}}={{F}_{AS}}......\left( 1 \right)
Now force on A due to B
FAB=14πε0Q2(2a)2.....(2){{F}_{AB}}=\dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{{{Q}^{2}}}{{{\left( 2a \right)}^{2}}}.....\left( 2 \right)
FAB{{F}_{AB}} = electric force between A and B
k =14πε0=\dfrac{1}{4\pi {{\varepsilon }_{0}}}= proportionality constant
Q = charge
a = radius or distance between two charges.

Force due to S and A
FAS=E.Q.....(3){{F}_{AS}}=E.Q.....\left( 3 \right)
First we have to find electric field E we will take gauss’s surface to find electric field on A and B now,
E.dA=Qinε0\oint{\overrightarrow{E}}.d\overrightarrow{A}=\dfrac{{{Q}_{in}}}{{{\varepsilon }_{0}}}
E=\overrightarrow{E}= Electric field
dAdA = area
Qin={{Q}_{in}}= Charge inside a sphere
ε0{{\varepsilon }_{0}} = permittivity
Electric field is constant hence
EdA=0rρdvε0E\oint{dA=}{}_{0}\int{^{r}}\dfrac{\rho dv}{{{\varepsilon }_{0}}}
Now we know that area of the radius r circle is
A=4πr2A=4\pi {{r}^{2}}
And it is given in question that ρ=kr\rho =kr
Now
E.4πr2=0rkr4πr2ε0dr E.4πr2=4πkε0(r44) E=kr24ε0....(4) \begin{aligned} & \Rightarrow E.4\pi {{r}^{2}}={}_{0}\int{^{r}}kr\dfrac{4\pi {{r}^{2}}}{{{\varepsilon }_{0}}}dr \\\ & \Rightarrow E.4\pi {{r}^{2}}=\dfrac{4\pi k}{{{\varepsilon }_{0}}}\left( \dfrac{{{r}^{4}}}{4} \right) \\\ & \therefore E=\dfrac{k{{r}^{2}}}{4{{\varepsilon }_{0}}}....\left( 4 \right) \\\ \end{aligned}
Now we have to find k in order to do it we will use the below equation
Charge on whole sphere
o2QdQ=oRρdv 2Q=oRkr4πr2dr 2Q=k4πR44 k=2QπR4 \begin{aligned} & \Rightarrow {}_{o}\int{^{2Q}}dQ={}_{o}\int{^{R}}\rho dv \\\ & \Rightarrow 2Q{{=}_{o}}\int{^{R}}kr4\pi {{r}^{2}}dr \\\ & \Rightarrow 2Q=k4\pi \dfrac{{{R}^{4}}}{4} \\\ & \therefore k=\dfrac{2Q}{\pi {{R}^{4}}} \\\ \end{aligned}
Now substitute the value of k in equation (4)
E=Qr22πε0R4E=\dfrac{Q{{r}^{2}}}{2\pi {{\varepsilon }_{0}}{{R}^{4}}}
From figure we can put r = a
E=Qa22πε0R4...(5)E=\dfrac{Q{{a}^{2}}}{2\pi {{\varepsilon }_{0}}{{R}^{4}}}...\left( 5 \right)
Now put all the values in equation (1)
FAB=FAS 14πε0Q2(2a)2=E.Q \begin{aligned} & \Rightarrow {{F}_{AB}}={{F}_{AS}} \\\ & \Rightarrow \dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{{{Q}^{2}}}{{{\left( 2a \right)}^{2}}}=E.Q \\\ \end{aligned}
14πε0Q2(4a)2=Q.a22πε0R4×Q\Rightarrow \dfrac{1}{4\pi {{\varepsilon }_{0}}}\dfrac{{{Q}^{2}}}{{{\left( 4a \right)}^{2}}}=\dfrac{Q.{{a}^{2}}}{2\pi {{\varepsilon }_{0}}{{R}^{4}}}\times Q
116a2=a22R4 a4=216R4 a4=18R4 a=814R \begin{aligned} & \Rightarrow \dfrac{1}{16{{a}^{2}}}=\dfrac{{{a}^{2}}}{2{{R}^{4}}} \\\ & \Rightarrow {{a}^{4}}=\dfrac{2}{16}{{R}^{4}} \\\ & \Rightarrow {{a}^{4}}=\dfrac{1}{8}{{R}^{4}} \\\ & \therefore a={{8}^{-\dfrac{1}{4}}}R \\\ \end{aligned}

Hence the correct option is (c).

Note:
In this question we have to consider both the charge A and B inside the sphere if we consider them outside the sphere the solution could lead us to the wrong answer or solution.