Solveeit Logo

Question

Question: Let a summation expression is given as \({{S}_{n}}=1+q+{{q}^{2}}+........+{{q}^{n}}\) and \({{T}_{n}...

Let a summation expression is given as Sn=1+q+q2+........+qn{{S}_{n}}=1+q+{{q}^{2}}+........+{{q}^{n}} and Tn=1+(q+12)+(q+12)2+.........+(q+12)n{{T}_{n}}=1+\left( \dfrac{q+1}{2} \right)+{{\left( \dfrac{q+1}{2} \right)}^{2}}+.........+{{\left( \dfrac{q+1}{2} \right)}^{n}} where q is a real number and q1q\ne 1. If 101C1+101C2S1+........+101C101S100=αT100{}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}{{S}_{1}}+........+{}^{101}{{C}_{101}}{{S}_{100}}=\alpha {{T}_{100}}, then α\alpha is equal to
(A) 2100{{2}^{100}}
(B) 200
(C) 299{{2}^{99}}
(D) 202

Explanation

Solution

We solve this question by first finding the value of Sn{{S}_{n}} and Tn{{T}_{n}} using the formula for sum of n terms of G.P, an1a1\dfrac{{{a}^{n}}-1}{a-1}. Then we consider the right-hand side of the expression given and simplify it and find its value using the formulas nC0+nC1+nC2+......+nCn=2n{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+......+{}^{n}{{C}_{n}}={{2}^{n}} and nC0+nC1q+nC2q2+......+nCnqn=(1+q)n{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}q+{}^{n}{{C}_{2}}{{q}^{2}}+......+{}^{n}{{C}_{n}}{{q}^{n}}={{\left( 1+q \right)}^{n}}. Then we find the value of the right-hand side of the expression and equate them and solve it to find the value of α\alpha .

Complete step-by-step solution:
We are given that Sn=1+q+q2+........+qn{{S}_{n}}=1+q+{{q}^{2}}+........+{{q}^{n}}.
We are also given that Tn=1+(q+12)+(q+12)2+.........+(q+12)n{{T}_{n}}=1+\left( \dfrac{q+1}{2} \right)+{{\left( \dfrac{q+1}{2} \right)}^{2}}+.........+{{\left( \dfrac{q+1}{2} \right)}^{n}}.
We can see those it is a sum of (n+1)\left( n+1 \right) terms that are in G.P with common ratio qq and (q+12)\left( \dfrac{q+1}{2} \right).
Let us consider the formula for the sum of n terms with first term 1 and common ratio aa is
1+a+a2+......+an1=an1a11+a+{{a}^{2}}+......+{{a}^{n-1}}=\dfrac{{{a}^{n}}-1}{a-1}
Using this formula, we can write Sn{{S}_{n}} as,
Sn=1+q+q2+........+qn Sn=qn+11q1 \begin{aligned} & \Rightarrow {{S}_{n}}=1+q+{{q}^{2}}+........+{{q}^{n}} \\\ & \Rightarrow {{S}_{n}}=\dfrac{{{q}^{n+1}}-1}{q-1} \\\ \end{aligned}
Using the same above formula for sum of n terms we can write Tn{{T}_{n}} as,

& \Rightarrow {{T}_{n}}=1+\left( \dfrac{q+1}{2} \right)+{{\left( \dfrac{q+1}{2} \right)}^{2}}+.........+{{\left( \dfrac{q+1}{2} \right)}^{n}} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{\left( \dfrac{q+1}{2} \right)}^{n+1}}-1}{\dfrac{q+1}{2}-1} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{\left( \dfrac{q+1}{2} \right)}^{n+1}}-1}{\dfrac{q-1}{2}} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{\left( q+1 \right)}^{n+1}}-{{2}^{n+1}}}{{{2}^{n}}\times \left( \dfrac{q-1}{2} \right)} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{\left( q+1 \right)}^{n+1}}-{{2}^{n+1}}}{{{2}^{n}}\times \left( q-1 \right)} \\\ \end{aligned}$$ We are given that ${}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}{{S}_{1}}+........+{}^{101}{{C}_{101}}{{S}_{100}}=\alpha {{T}_{100}}..........\left( 1 \right)$. So, now let us consider ${}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}{{S}_{1}}+........+{}^{101}{{C}_{101}}{{S}_{100}}$. It can also be written as $\Rightarrow {}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}{{S}_{1}}+........+{}^{101}{{C}_{101}}{{S}_{100}}=\sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}}{{S}_{i}}........\left( 2 \right)$ Now let us substitute the value of ${{S}_{i}}$ in it. Then we get, $\begin{aligned} & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}\dfrac{{{q}^{i+1}}-1}{q-1}} \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}\left( {{q}^{i+1}}-1 \right)} \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{q}^{i+1}}}-\dfrac{1}{q-1}\sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}} \\\ \end{aligned}$ $\begin{aligned} & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\left[ {}^{101}{{C}_{1}}q+{}^{101}{{C}_{2}}{{q}^{2}}+......+{}^{101}{{C}_{101}}{{q}^{101}} \right]-\dfrac{1}{q-1}\left[ {}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}+......+{}^{101}{{C}_{101}} \right] \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\left[ {}^{101}{{C}_{0}}+{}^{101}{{C}_{1}}q+{}^{101}{{C}_{2}}{{q}^{2}}+......+{}^{101}{{C}_{101}}{{q}^{101}}-{}^{101}{{C}_{0}} \right] \\\ & \text{ }-\dfrac{1}{q-1}\left[ {}^{101}{{C}_{0}}+{}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}+......+{}^{101}{{C}_{101}}-{}^{101}{{C}_{0}} \right] \\\ \end{aligned}$ Now, let us consider the formula for binomial expansion $\begin{aligned} & \Rightarrow {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}q+{}^{n}{{C}_{2}}{{q}^{2}}+......+{}^{n}{{C}_{n}}{{q}^{n}}={{\left( 1+q \right)}^{n}} \\\ & \Rightarrow {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+......+{}^{n}{{C}_{n}}={{2}^{n}} \\\ \end{aligned}$ Using these formulas, we can write the above equation as, $\begin{aligned} & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\left[ {{\left( 1+q \right)}^{101}}-1 \right]-\dfrac{1}{q-1}\left[ {{2}^{101}}-1 \right] \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\left[ {{\left( 1+q \right)}^{101}}-1-\left( {{2}^{101}}-1 \right) \right] \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{1}{q-1}\left[ {{\left( 1+q \right)}^{101}}-{{2}^{101}} \right] \\\ & \Rightarrow \sum\limits_{i=0}^{100}{{}^{101}{{C}_{i+1}}{{S}_{i}}}=\dfrac{{{\left( 1+q \right)}^{101}}-{{2}^{101}}}{q-1} \\\ \end{aligned}$ Substituting this value in equation (2) we get, $\Rightarrow {}^{101}{{C}_{1}}+{}^{101}{{C}_{2}}{{S}_{1}}+........+{}^{101}{{C}_{101}}{{S}_{100}}=\dfrac{{{\left( 1+q \right)}^{101}}-{{2}^{101}}}{q-1}..............\left( 3 \right)$ Now let us consider the right-hand side of equation (1). Using the above obtained value of ${{T}_{n}}$, we get $$\Rightarrow \alpha {{T}_{100}}=\alpha \dfrac{{{\left( q+1 \right)}^{101}}-{{2}^{101}}}{{{2}^{100}}\times \left( q-1 \right)}...........\left( 4 \right)$$ Substituting the value obtained in equations (3) and (4) in equation (1) we get, $\begin{aligned} & \Rightarrow \dfrac{{{\left( 1+q \right)}^{101}}-{{2}^{101}}}{q-1}=\alpha \dfrac{{{\left( q+1 \right)}^{101}}-{{2}^{101}}}{{{2}^{100}}\times \left( q-1 \right)} \\\ & \Rightarrow 1=\dfrac{\alpha }{{{2}^{100}}} \\\ & \Rightarrow \alpha ={{2}^{100}} \\\ \end{aligned}$ **Hence, we get the value of $\alpha $ as ${{2}^{100}}$. Hence, the answer is Option A.** **Note:** There is a possibility of one making a mistake while solving this problem by writing the value of ${{S}_{n}}$ and ${{T}_{n}}$ as, $\begin{aligned} & \Rightarrow {{S}_{n}}=1+q+{{q}^{2}}+........+{{q}^{n}} \\\ & \Rightarrow {{S}_{n}}=\dfrac{{{q}^{n}}-1}{q-1} \\\ \end{aligned}$ $$\begin{aligned} & \Rightarrow {{T}_{n}}=1+\left( \dfrac{q+1}{2} \right)+{{\left( \dfrac{q+1}{2} \right)}^{2}}+.........+{{\left( \dfrac{q+1}{2} \right)}^{n}} \\\ & \Rightarrow {{T}_{n}}=\dfrac{{{\left( \dfrac{q+1}{2} \right)}^{n}}-1}{\dfrac{q+1}{2}-1} \\\ \end{aligned}$$ But here there are $\left( n+1 \right)$ terms in their expressions, not $n$ terms so they are wrong.