Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let a rectangle ABCD of sides 2 and 4 be inscribed in another rectangle PQRS such that the vertices of the rectangle ABCD lie on the sides of the rectangle PQRS. Let a and b be the sides of the rectangle PQRS when its area is maximum. Then (a + b)2 is equal to :

A

72

B

60

C

80

D

64

Answer

72

Explanation

Solution

Solution Fig

Consider rectangle ABCDABCD inscribed within rectangle PQRSPQRS as shown in the figure. Let θ\theta be the angle formed between side ABAB of ABCDABCD and side PQPQ of PQRSPQRS.

Using trigonometry, the dimensions of PQRSPQRS are expressed as:

a=4cosθ+2sinθa = 4 \cos \theta + 2 \sin \theta b=2cosθ+4sinθb = 2 \cos \theta + 4 \sin \theta

The area of PQRSPQRS is given by:

Area=(4cosθ+2sinθ)(2cosθ+4sinθ)\text{Area} = (4 \cos \theta + 2 \sin \theta)(2 \cos \theta + 4 \sin \theta)

Expanding this, we get:

=8cos2θ+16sinθcosθ+4sin2θ+8sin2θ= 8 \cos^2 \theta + 16 \sin \theta \cos \theta + 4 \sin^2 \theta + 8 \sin^2 \theta =8+10sin2θ= 8 + 10 \sin 2\theta

The area is maximized when sin2θ=1\sin 2\theta = 1, i.e., θ=45\theta = 45^\circ.

Thus, the maximum area is:

8+10=188 + 10 = 18

Now, we calculate (a+b)2(a + b)^2:

(a+b)2=(4cosθ+2sinθ+2cosθ+4sinθ)2(a + b)^2 = (4 \cos \theta + 2 \sin \theta + 2 \cos \theta + 4 \sin \theta)^2 =(6cosθ+6sinθ)2= (6 \cos \theta + 6 \sin \theta)^2 =36(sinθ+cosθ)2= 36(\sin \theta + \cos \theta)^2

Since sinθ+cosθ=2\sin \theta + \cos \theta = \sqrt{2} at θ=45\theta = 45^\circ,=36(2)2=36×2=72= 36(\sqrt{2})^2 = 36 \times 2 = 72