Solveeit Logo

Question

Question: Let \(A=R\times R\) and \(*\) be a binary operation on \(A\) defined by \(\left( a,b \right)*\lef...

Let A=R×RA=R\times R and * be a binary operation on AA defined by
(a,b)(c,d)=(a+c,b+d)\left( a,b \right)*\left( c,d \right)=\left( a+c,b+d \right). Show that * is commutative and associative. Find the identity element for * on AA .Also find the inverse of every element (a,b)A\left( a,b \right)\in A.

Explanation

Solution

Here in this question we will try to show that * is commutative and associative binary operation, by using the definitions for * to be commutative it should obey that (a,b)(c,d)=(c,d)(a,b)\left( a,b \right)*(c,d)=(c,d)*(a,b) and for * to be associative it should obey ((a,b)(c,d))(e,f)=(a,b)((c,d)(e,f))\left( \left( a,b \right)*\left( c,d \right) \right)*\left( e,f \right)=\left( a,b \right)*\left( \left( c,d \right)*\left( e,f \right) \right).
For identity element and inverse of each element (a,b)A\left( a,b \right)\in A for * binary operation on AA, we have to consider (a,b)(x,y)=(a,b)\left( a,b \right)*\left( x,y \right)=\left( a,b \right)for (x,y)\left( x,y \right)to be identity element and (a,b)(x,y)=(0,0)\left( a,b \right)*\left( x,y \right)=\left( 0,0 \right) for (x,y)\left( x,y \right)to be inverse of each element (a,b)A\left( a,b \right)\in A for * binary operation on AA.

Complete step by step answer:
Here in this question we have A=R×RA=R\times R and * be a binary operation on AA defined by
(a,b)(c,d)=(a+c,b+d)\left( a,b \right)*\left( c,d \right)=\left( a+c,b+d \right).
For * to be commutative, we have to show that (a,b)(c,d)=(c,d)(a,b)\left( a,b \right)*(c,d)=(c,d)*(a,b).
(a,b)(c,d)=(a+c,b+d)\left( a,b \right)*\left( c,d \right)=\left( a+c,b+d \right)
And from the definition we can say that
(c,d)(a,b)=(c+a,d+b)\left( c,d \right)*(a,b)=(c+a,d+b).
Here, we observe that(a,b)(c,d)=(c,d)(a,b)\left( a,b \right)*(c,d)=(c,d)*(a,b).
Hence, we can say that * is commutative binary operation on AA.
For * to be associative, we have to show that ((a,b)(c,d))(e,f)=(a,b)((c,d)(e,f))\left( \left( a,b \right)*\left( c,d \right) \right)*\left( e,f \right)=\left( a,b \right)*\left( \left( c,d \right)*\left( e,f \right) \right).
We have,
(a,b)(c,d)=(a+c,b+d)\left( a,b \right)*\left( c,d \right)=\left( a+c,b+d \right).
And from the definition we can say that
((a,b)(c,d))(e,f)=(a+c,b+d)(e,f) =(a+c+e,b+d+f)\begin{aligned} & \left( \left( a,b \right)*\left( c,d \right) \right)*\left( e,f \right)=\left( a+c,b+d \right)*\left( e,f \right) \\\ & =\left( a+c+e,b+d+f \right) \end{aligned}
And from the definition we can also say that
(a,b)((c,d)(e,f))=(a,b)(c+e,d+f) (a+c+e,b+d+f)\begin{aligned} & \left( a,b \right)*\left( \left( c,d \right)*\left( e,f \right) \right)=\left( a,b \right)*\left( c+e,d+f \right) \\\ & \Rightarrow \left( a+c+e,b+d+f \right) \end{aligned}
Here, we observe that ((a,b)(c,d))(e,f)=(a,b)((c,d)(e,f))\left( \left( a,b \right)*\left( c,d \right) \right)*\left( e,f \right)=\left( a,b \right)*\left( \left( c,d \right)*\left( e,f \right) \right).
Hence, we can say that * is associative binary operation on AA.
From, the definition of identity element for * onAA, we can say that the identity element for * onAA is (x,y)\left( x,y \right), if there exists (x,y)\left( x,y \right) such that (a,b)(x,y)=(a,b)\left( a,b \right)*\left( x,y \right)=\left( a,b \right).
Let us simplify the (a,b)(x,y)=(a,b)\left( a,b \right)*\left( x,y \right)=\left( a,b \right)
(a,b)(x,y)=(a+x,b+y) (a,b)\begin{aligned} & \left( a,b \right)*\left( x,y \right)=\left( a+x,b+y \right) \\\ & \Rightarrow (a,b) \end{aligned}
This occurs only when x=0,y=0x=0,y=0. So we can say that (0,0)\left( 0,0 \right) is the identity element for * binary operation on AA.
From, the definition of inverse of every element (a,b)A\left( a,b \right)\in A for * binary operation on AA, we can say that the inverse element for* onAAis(x,y)\left( x,y \right), if there exists (x,y)\left( x,y \right) such that (a,b)(x,y)=(0,0)\left( a,b \right)*\left( x,y \right)=\left( 0,0 \right).
Let us simplify the (a,b)(x,y)=(0,0)\left( a,b \right)*\left( x,y \right)=\left( 0,0 \right)
(a,b)(x,y)=(a+x,b+y) (0,0)\begin{aligned} & \left( a,b \right)*\left( x,y \right)=\left( a+x,b+y \right) \\\ & \Rightarrow (0,0) \end{aligned}
This occurs only whenx=a,y=bx=-a,y=-b. So we can say that (a,b)\left( -a,-b \right) is the inverse of every element (a,b)A\left( a,b \right)\in A for* binary operation on AA.

So, the correct answer is “Option A”.

Note: Here in this question for * to be commutative, we have to show that(a,b)(c,d)=(c,d)(a,b)\left( a,b \right)*(c,d)=(c,d)*(a,b). If we take “+” as not a commutative operation it will lead us to a completely different answer, so here we should be clear that “+” is a commutative operation.