Solveeit Logo

Question

Mathematics Question on Relations and Functions

Let A=R3A=R−\\{3\\} and B=R1B=R−\\{1\\}. Consider the function f:ABf: A→B defined by f(x)=(x2x3)f(x)=\bigg(\frac{x-2}{x-3}\bigg). Is f one-one and onto? Justify your answer.

Answer

A=R3A=R−\\{3\\}, B=R1B=R−\\{1\\}
f:ABf: A→B is defined as f(x)=(x2x3)f(x)=\bigg(\frac{x-2}{x-3}\bigg).

Let x,yAx, y ∈ A such that f(x)=f(y)f(x)=f(y)

x2x3=y2y3⇒\frac{x-2}{x-3}=\frac{y-2}{y-3}
(x2)(y3)=(y2)(x3)⇒(x-2)(y-3)=(y-2)(x-3)
xy3x2y+6=xy3y2x+6⇒xy-3x-2y+6=xy-3y-2x+6
3x2y=3y2x⇒-3x-2y=-3y-2x
3x2x=3y2y⇒3x-2x=3y-2y
x=y⇒x=y
∴ f is one-one.

Let yB=R1y ∈B = R − \\{1\\}. Then, y1y ≠ 1.
The function f is onto if there exists xAx ∈A such that f(x)=yf(x) = y.

Now,
f(x)=yf(x)=y
x2x3=y⇒\frac{x-2}{x-3}=y
x2=xy3y⇒x-2=xy-3y
x(1y)=3y+2⇒x(1-y)=-3y+2
x=23y1yA⇒x=\frac{2-3y}{1-y} ∈ A [y1][y≠1]

Thus, for any yBy ∈ B, there exists 23y1yA\frac{2-3y}{1-y} ∈A such that
f(23y1y)f\big(\frac{2-3y}{1-y}\big)
=(23y1y)2(23y1y)3=\frac{\big(\frac{2-3y}{1-y}\big)-2}{\big(\frac{2-3y}{1-y}\big)-3}
=23y2+2y23y3+3y=\frac{2-3y-2+2y}{2-3y-3+3y}
=y1=\frac{-y}{-1}
=y=y.
\therefore f is onto.

Hence, function f is one-one and onto.