Solveeit Logo

Question

Mathematics Question on Determinants

Let A, other than I or - I, be a 2 ×\times 2 real matrix such that A2=IA^2 = I, I being the unit matrix. Let Tr (A) be the sum of diagonal elements of A. Tr (A) = 0 det (A) = - 1

A

Statement-1 is true; Statement-2 is false

B

Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1

D

Statement-1 is false; Statement-2 is true

Answer

Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1

Explanation

Solution

[ab cd][ab cd]=[10 01]\begin{bmatrix}a&b\\\ c &d\end{bmatrix} \begin{bmatrix}a&b\\\ c&d\end{bmatrix} = \begin{bmatrix}1&0\\\ 0 &1\end{bmatrix} [a2+bcab+bd ac+cdbc+d2]=[10 01]\begin{bmatrix}a^{2} + bc&ab+bd\\\ ac+cd &bc+d^{2}\end{bmatrix} = \begin{bmatrix}1&0\\\ 0 &1\end{bmatrix} b(a+d)=0,b=0b(a + d) = 0, b = 0 or a=da = -d ? c(a+d)=0,c=0c(a + d) = 0, c = 0 or a=da = - d ? a2+bc=1,bc+d2=1a^2 + bc = 1, bc + d^2 = 1 ? ??? Now, det(A) = ad - bc Now, from (3) a2+bc=1a^2 + bc =1 and d2+bc=1d^2 + bc = 1 So, a2d2=0a^2 - d^2 = 0 Adding a2+d2+2bc=2a^2 + d^2 + 2bc = 2  (a+d)22ad+2bc=2\Rightarrow \ (a + d)^2 - 2ad + 2bc = 2 or 02(adbc)=20 - 2(ad - bc) = 2 So, ad - bc = 1 \Rightarrow det(A) = -1 So, statement - 2 is also true. But statement - 2 is not the correct explanation of statement-1.