Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Let an=sin(1n3)a_n=\sin(\frac{1}{n^3}) and bn=sin(1n)b_n=\sin(\frac{1}{n}) for n ∈ N\N. Then

A

both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are convergent

B

n=1an\sum\limits_{n=1}^{\infin}a_n is convergent n=1bn\sum\limits_{n=1}^{\infin}b_n is NOT convergent

C

n=1an\sum\limits_{n=1}^{\infin}a_n is NOT convergent n=1bn\sum\limits_{n=1}^{\infin}b_n is convergent

D

both n=1an\sum\limits_{n=1}^{\infin}a_n and n=1bn\sum\limits_{n=1}^{\infin}b_n are NOT convergent

Answer

n=1an\sum\limits_{n=1}^{\infin}a_n is convergent n=1bn\sum\limits_{n=1}^{\infin}b_n is NOT convergent

Explanation

Solution

The correct option is (B) : n=1an\sum\limits_{n=1}^{\infin}a_n is convergent n=1bn\sum\limits_{n=1}^{\infin}b_n is NOT convergent.