Solveeit Logo

Question

Mathematics Question on types of differential equations

Let (an)n=0(a_n)^∞_{n=0} be a sequence such that a0=a1=0 and an+2=2an+1an+1a_{n+2}=2a_{n+1}−a_n+1 for all n⩾0. Then, n=2an7n∑^∞_{n=2} \frac{a_n}{7^n} is equal to

A

6343\frac{6}{343}

B

7216\frac{7}{216}

C

8343\frac{8}{343}

D

49216\frac{49}{216}

Answer

7216\frac{7}{216}

Explanation

Solution

The correct option is(B): 7216\frac{7}{216}

an+2 = 2an+1 – an + 1 & a0 = a1 = 0

a2 = 2a1 – a0 + 1 = 1

a3 = 2a2 – a1 + 1 = 3

a4 = 2a3 – a2 + 1 = 6

a5 = 2a4 – a3 + 1 = 10

be a sequence such that a0 = a1 = 0 and an + 2 = 2an + 1

36s49=749×6\frac{36_s}{49}=\frac{7}{49×6}

s=7216s=\frac{7}{216}