Solveeit Logo

Question

Mathematics Question on Limits

Let an=1n(1+x2+x22+x33++xn1n)dxa _{ n }=\int\limits_{-1}^{ n }\left(1+\frac{ x }{2}+\frac{ x ^2}{2}+\frac{ x ^3}{3}+\ldots \ldots +\frac{ x ^{ n -1}}{ n }\right) dx for nNn \in N Then the sum of all the elements of the set \left\\{ n \in N : a _{ n } \in(2,30)\right\\} is ______

Answer

The correct answer is 5.

1n(1+x2+x23+....+xn1n)dx\int_{-1}^{n}(1+\frac{x}{2}+\frac{x^{2}}{3}+....+\frac{x^{n-1}}{n})dx

[x+x22+x332+...xnn2]n[x+\frac{x^{2}}{2}+\frac{x^{3}}{3^{2}}+...\frac{x^{n}}{n^{2}}]^{n}

(n+n222+n332+...+nnn2)(n+\frac{n^{2}}{2^{2}}+\frac{n^{3}}{3^{2}}+...+-\frac{n^{n}}{n^{2}})

(1+122132+142+...+(1)nn2)-(-1+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{4^{2}}+...+\frac{(-1)^{n}}{n^{2}})

an=(n+1)+122(n21)+132(n3+1)+...+1n2(nn(1)n)a_{n}=(n+1)+\frac{1}{2^{2}}(n^{2}-1)+\frac{1}{3^{2}}(n^{3}+1)+...+\frac{1}{n^{2}}(n^{n}-(-1)^{n})

If  n=1an=2ϵ̸(2,30)If \; n=1\Rightarrow a_{n}=2\not{\epsilon }(2,30)

If n = 2

an=(2+1)+122(221)=3+34<30\Rightarrow a_{n}=(2+1)+\frac{1}{2^{2}}(2^{2}-1)=3+\frac{3}{4}< 30

If n = 3

an=(3+1)+14(8)+19(28)=11+289<30\Rightarrow a_{n}=(3+1)+\frac{1}{4}(8)+\frac{1}{9}(28)=11+\frac{28}{9}< 30

If n = 4

an=(4+1)+14(161)+19(64+1)+116\Rightarrow a_{n}=(4+1)+\frac{1}{4}(16-1)+\frac{1}{9}(64+1)+\frac{1}{16}

=5+154+659+25516>30=5+\frac{15}{4}+\frac{65}{9}+\frac{255}{16}> 30

Test {2,3} sum of elements 5