Question
Mathematics Question on Limits
Let an=−1∫n(1+2x+2x2+3x3+……+nxn−1)dx for n∈N Then the sum of all the elements of the set \left\\{ n \in N : a _{ n } \in(2,30)\right\\} is ______
Answer
The correct answer is 5.
∫−1n(1+2x+3x2+....+nxn−1)dx
[x+2x2+32x3+...n2xn]n
(n+22n2+32n3+...+−n2nn)
−(−1+221−321+421+...+n2(−1)n)
an=(n+1)+221(n2−1)+321(n3+1)+...+n21(nn−(−1)n)
Ifn=1⇒an=2ϵ(2,30)
If n = 2
⇒an=(2+1)+221(22−1)=3+43<30
If n = 3
⇒an=(3+1)+41(8)+91(28)=11+928<30
If n = 4
⇒an=(4+1)+41(16−1)+91(64+1)+161
=5+415+965+16255>30
Test {2,3} sum of elements 5