Solveeit Logo

Question

Mathematics Question on Sets

Let A=n[100,700]N:n is neither a multiple of 3 nor a multiple of 4A = \\{ n \in [100, 700] \cap \mathbb{N} : n \text{ is neither a multiple of 3 nor a multiple of 4} \\}.
Then the number of elements in AA is:

A

300

B

280

C

310

D

290

Answer

300

Explanation

Solution

Step 1: Find the total number of elements in [100, 700]:

Total=700100+1=601.\text{Total} = 700 - 100 + 1 = 601.

Step 2: Find the number of multiples of 3 in [100, 700]:

Multiples of 3: 102,105,108,,699102, 105, 108, \ldots, 699.
This is an arithmetic progression (AP) with: a=102,d=3,and l=699.a = 102, \, d = 3, \, \text{and } l = 699. The nn-th term is: Tn=a+(n1)d    699=102+(n1)3.T_n = a + (n - 1)d \implies 699 = 102 + (n - 1)3. Simplify: 597=3(n1)    n=200.597 = 3(n - 1) \implies n = 200. Thus, n(3)=200n(3) = 200.

Step 3: Find the number of multiples of 4 in [100, 700]:

Multiples of 4: 100,104,108,,700100, 104, 108, \ldots, 700.
This is an AP with: a=100,d=4,and l=700.a = 100, \, d = 4, \, \text{and } l = 700. The nn-th term is: Tn=a+(n1)d    700=100+(n1)4.T_n = a + (n - 1)d \implies 700 = 100 + (n - 1)4. Simplify: 600=4(n1)    n=151.600 = 4(n - 1) \implies n = 151. Thus, n(4)=151n(4) = 151.

Step 4: Find the number of multiples of both 3 and 4 (i.e., multiples of 12):

Multiples of 12: 108,120,132,,696108, 120, 132, \ldots, 696.
This is an AP with: a=108,d=12,and l=696.a = 108, \, d = 12, \, \text{and } l = 696. The nn-th term is: Tn=a+(n1)d    696=108+(n1)12.T_n = a + (n - 1)d \implies 696 = 108 + (n - 1)12. Simplify: 588=12(n1)    n=50.588 = 12(n - 1) \implies n = 50. Thus, n(34)=50n(3 \cap 4) = 50.

Step 5: Use the inclusion-exclusion principle to find n(34)n(3 \cup 4):

n(34)=n(3)+n(4)n(34).n(3 \cup 4) = n(3) + n(4) - n(3 \cap 4). Substitute values: n(34)=200+15150=301.n(3 \cup 4) = 200 + 151 - 50 = 301.

Step 6: Find the number of elements in AA (neither multiples of 3 nor 4):

n(A)=Totaln(34).n(A) = \text{Total} - n(3 \cup 4). Substitute values: n(A)=601301=300.n(A) = 601 - 301 = 300.