Question
Mathematics Question on Sets
Let A=n∈[100,700]∩N:n is neither a multiple of 3 nor a multiple of 4.
Then the number of elements in A is:
300
280
310
290
300
Solution
Step 1: Find the total number of elements in [100, 700]:
Total=700−100+1=601.
Step 2: Find the number of multiples of 3 in [100, 700]:
Multiples of 3: 102,105,108,…,699.
This is an arithmetic progression (AP) with: a=102,d=3,and l=699. The n-th term is: Tn=a+(n−1)d⟹699=102+(n−1)3. Simplify: 597=3(n−1)⟹n=200. Thus, n(3)=200.
Step 3: Find the number of multiples of 4 in [100, 700]:
Multiples of 4: 100,104,108,…,700.
This is an AP with: a=100,d=4,and l=700. The n-th term is: Tn=a+(n−1)d⟹700=100+(n−1)4. Simplify: 600=4(n−1)⟹n=151. Thus, n(4)=151.
Step 4: Find the number of multiples of both 3 and 4 (i.e., multiples of 12):
Multiples of 12: 108,120,132,…,696.
This is an AP with: a=108,d=12,and l=696. The n-th term is: Tn=a+(n−1)d⟹696=108+(n−1)12. Simplify: 588=12(n−1)⟹n=50. Thus, n(3∩4)=50.
Step 5: Use the inclusion-exclusion principle to find n(3∪4):
n(3∪4)=n(3)+n(4)−n(3∩4). Substitute values: n(3∪4)=200+151−50=301.
Step 6: Find the number of elements in A (neither multiples of 3 nor 4):
n(A)=Total−n(3∪4). Substitute values: n(A)=601−301=300.