Solveeit Logo

Question

Quantitative Aptitude Question on Basics of Numbers

Let ana_n be the largest integer not exceeding n\sqrt{n}. Then the value of a1+a2++a50a_1 + a_2 + \dots + a_{50} is

Answer

We are asked to find the sum of a1+a2++a50a_1 + a_2 + \dots + a_{50}, where an=na_n = \lfloor \sqrt{n} \rfloor.
The value of ana_n is the greatest integer less than or equal to n\sqrt{n}. To find the sum, we can break the sum into intervals where n\lfloor \sqrt{n} \rfloor remains constant. The value of n\lfloor \sqrt{n} \rfloor will stay constant for values of nn within certain intervals.

- For n=1n = 1 to 3, n=1\lfloor \sqrt{n} \rfloor = 1 (3 terms).
- For n=4n = 4 to 8, n=2\lfloor \sqrt{n} \rfloor = 2 (5 terms).
- For n=9n = 9 to 15, n=3\lfloor \sqrt{n} \rfloor = 3 (7 terms).
- For n=16n = 16 to 24, n=4\lfloor \sqrt{n} \rfloor = 4 (9 terms).
- For n=25n = 25 to 35, n=5\lfloor \sqrt{n} \rfloor = 5 (11 terms).
- For n=36n = 36 to 48, n=6\lfloor \sqrt{n} \rfloor = 6 (13 terms).
- For n=49n = 49 and 50, n=7\lfloor \sqrt{n} \rfloor = 7 (2 terms).

Now, calculate the total sum:

Total sum =1×3+2×5+3×7+4×9+5×11+6×13+7×2= 1 \times 3 + 2 \times 5 + 3 \times 7 + 4 \times 9 + 5 \times 11 + 6 \times 13 + 7 \times 2
=3+10+21+36+55+78+14=217= 3 + 10 + 21 + 36 + 55 + 78 + 14 = 217.

Thus, the value of a1+a2++a50=217a_1 + a_2 + \dots + a_{50} = 217.

Explanation

Solution

We are asked to find the sum of a1+a2++a50a_1 + a_2 + \dots + a_{50}, where an=na_n = \lfloor \sqrt{n} \rfloor.
The value of ana_n is the greatest integer less than or equal to n\sqrt{n}. To find the sum, we can break the sum into intervals where n\lfloor \sqrt{n} \rfloor remains constant. The value of n\lfloor \sqrt{n} \rfloor will stay constant for values of nn within certain intervals.

- For n=1n = 1 to 3, n=1\lfloor \sqrt{n} \rfloor = 1 (3 terms).
- For n=4n = 4 to 8, n=2\lfloor \sqrt{n} \rfloor = 2 (5 terms).
- For n=9n = 9 to 15, n=3\lfloor \sqrt{n} \rfloor = 3 (7 terms).
- For n=16n = 16 to 24, n=4\lfloor \sqrt{n} \rfloor = 4 (9 terms).
- For n=25n = 25 to 35, n=5\lfloor \sqrt{n} \rfloor = 5 (11 terms).
- For n=36n = 36 to 48, n=6\lfloor \sqrt{n} \rfloor = 6 (13 terms).
- For n=49n = 49 and 50, n=7\lfloor \sqrt{n} \rfloor = 7 (2 terms).

Now, calculate the total sum:

Total sum =1×3+2×5+3×7+4×9+5×11+6×13+7×2= 1 \times 3 + 2 \times 5 + 3 \times 7 + 4 \times 9 + 5 \times 11 + 6 \times 13 + 7 \times 2
=3+10+21+36+55+78+14=217= 3 + 10 + 21 + 36 + 55 + 78 + 14 = 217.

Thus, the value of a1+a2++a50=217a_1 + a_2 + \dots + a_{50} = 217.