Solveeit Logo

Question

Question: Let \(a=\min \left\\{ {{x}^{2}}+2x+3,x\in R \right\\}\) and \(b=\underset{\theta \to 0}{\mathop{\lim...

Let a=\min \left\\{ {{x}^{2}}+2x+3,x\in R \right\\} and b=limθ01cosθθ2b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}. The value of r=0nar.bnr\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}} is
(a) 2n+113.2n\dfrac{{{2}^{n+1}}-1}{{{3.2}^{n}}}
(b) 2n+1+13.2n\dfrac{{{2}^{n+1}}+1}{{{3.2}^{n}}}
(c) 4n+113.2n\dfrac{{{4}^{n+1}}-1}{{{3.2}^{n}}}
(d) none of these

Explanation

Solution

Hint: a'a' can be found out by using the formula for minimum value of a quadratic polynomial. We can use the L' Hopital rule to find b'b' . The required answer in the form of summation is a Geometric progression.

In the question, it is given a=\min \left\\{ {{x}^{2}}+2x+3,x\in R \right\\}
a=\Rightarrow a= minimum value of x2+2x+3{{x}^{2}}+2x+3
For a quadratic polynomial ax2+bx+ca{{x}^{2}}+bx+c, the minimum value is given by the formula,
(b24ac)4a.............(1)\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)
Since the polynomial given in the question is x2+2x+3{{x}^{2}}+2x+3, substituting a=1,b=2,c=3a=1,b=2,c=3 in equation (1)\left( 1 \right), we get,
a=((2)24(1)(3))4(1) a=(412)4 a=(8)4 a=84 a=2...........(2) \begin{aligned} & a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\\ & \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\\ & \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\\ & \Rightarrow a=\dfrac{8}{4} \\\ & \Rightarrow a=2...........\left( 2 \right) \\\ \end{aligned}
Also, it is given in the question b=limθ01cosθθ2b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}. If we substitute θ=0\theta =0 in the limit function, we can notice that this limit is of the form 00\dfrac{0}{0}. Since this limit is of the form 00\dfrac{0}{0}, we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. θ\theta in this case and then apply the limit again.
Applying L’ Hopital rule on bb, we get,
b=limθ0d(1cosθ)dθdθ2dθ b=limθ0sinθ2θ b=12limθ0sinθθ...........(3) \begin{aligned} & b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\\ & \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\\ & \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\\ \end{aligned}
There is a formula limθ0sinθθ=1\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1. Substituting limθ0sinθθ=1\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1 in equation (3)\left( 3 \right), we get,
b=12...........(4)b=\dfrac{1}{2}...........\left( 4 \right)
In the question, it is asked to find the value of r=0nar.bnr\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}. Substituting equation (2)\left( 2 \right) and equation (4)\left( 4 \right) in r=0nar.bnr\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}, we get,

& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\\ \end{aligned}$$ Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation. $$\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}$$ Evaluating the summation, we get, $$\begin{aligned} & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\\ & \\\ \end{aligned}$$ The above series is a geometric progression of which we have to calculate the sum. The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula, $S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$ From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get, $$\begin{aligned} & \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\\ & \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\\ \end{aligned}$$ So the answer is option (c) Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.