Question
Question: Let a = then
A
a = b
B
a<b
C
4a – 3b = 0
D
3a – 4b = 0
Answer
3a – 4b = 0
Explanation
Solution
a = limn→∞ n3∑r=1nr2
a = limn→∞ ∑r=1n(nr)2×n1
a = ∫01x2dx= [3x3]01
a = 31
b = ∑r=1nn4r3−∑r=1nn4r2 ® 0
[Sum of r2 given the expression in n3]
b = ∑r=1nn4r3 = ∑r=1n(nr)3×n1
b = ∫01x3dx = [4x4]01 = ¼