Question
Question: Let a matrix A = \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\), P = \(\begin{bmatrix} \frac{\sqrt...
Let a matrix A = [1011], P = $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \
- \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-
A
[1020051]
B
41 [1+20053200560151−20053]
C
41 [1+20053200520051−20053]
D
[2005020051]
Answer
[1020051]
Explanation
Solution
PT Q2005 P = PT (PAPT)2005P
= PT 2005times{(PAPT)(PAPT)........(PAPT)}P
= 2005times(PTP)A(PTP)A(PTP)........(PTP)A(PTP)= A2005
A2 =[1021], A3 = A2A = [1031]…. and so on.
A2005 = [1020051]Ž PT Q2005 P = [1020051]