Solveeit Logo

Question

Question: Let a matrix A = \(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\), P = \(\begin{bmatrix} \frac{\sqrt...

Let a matrix A = [1101]\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P = $\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \

  • \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, Q = PAPT where PT is transpose of matrix P. then PT Q2005 P is-
A

[1200501]\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}

B

14\frac{1}{4} [1+2005360152005120053]\begin{bmatrix} 1 + 2005\sqrt{3} & 6015 \\ 2005 & 1 - 2005\sqrt{3} \end{bmatrix}

C

14\frac{1}{4} [1+2005320052005120053]\begin{bmatrix} 1 + 2005\sqrt{3} & 2005 \\ 2005 & 1 - 2005\sqrt{3} \end{bmatrix}

D

[2005200501]\begin{bmatrix} 2005 & 2005 \\ 0 & 1 \end{bmatrix}

Answer

[1200501]\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}

Explanation

Solution

PT Q2005 P = PT (PAPT)2005P

= PT {(PAPT)(PAPT)........(PAPT)}2005times\frac{\left\{ (PAP^{T})(PAP^{T})........(PAP^{T}) \right\}}{2005times}P

= (PTP)A(PTP)A(PTP)........(PTP)A(PTP)2005times\frac{(P^{T}P)A(P^{T}P)A(P^{T}P)........(P^{T}P)A(P^{T}P)}{2005times}= A2005

A2 =[1201]\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A3 = A2A = [1301]\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}…. and so on.

A2005 = [1200501]\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}Ž PT Q2005 P = [1200501]\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}