Solveeit Logo

Question

Mathematics Question on Ellipse

Let a line L pass through the point intersection of the lines bx\+10y8=0bx \+ 10y – 8 = 0 and 2x - 3y = 0, \quad b \in \mathbb{R} - \left\\{\frac{4}{3}\right\\}. If the line L also passes through the point (1,1)(1, 1) and touches the circle 17(x2+y2)=1617(x^2 + y^2) = 16, then the eccentricity of the ellipse x25+y25=1\frac{x^2}{5} + \frac{y^2}{5} = 1 is

A

25\frac{2}{\sqrt{5}}

B

35\frac{\sqrt{3}}{5}

C

15\frac{1}{\sqrt{5}}

D

25\frac{\sqrt{2}}{5}

Answer

35\frac{\sqrt{3}}{5}

Explanation

Solution

L1:bx\+10y8=0,L2:2x3y=0L_1 :bx \+ 10y – 8 = 0, L_2 : 2x – 3y = 0
then L:(bx\+10y8)+λ(2x3y)=0L : (bx \+ 10y – 8) + λ(2x – 3y) = 0
Since, It passes through (1,1)(1, 1)
so, b\+2λ=0λ=b\+2b \+ 2 – λ = 0 ⇒ λ = b \+ 2
and touches the circle x2+y2=1617x^2 + y^2 = \frac{16}{17}

82(2λ+b)2+(103λ)2=1617\left|\frac{82}{(2\lambda + b)^2} + (10 - 3\lambda)^2\right| = \frac{16}{17}

4λ2+b2+4bλ+100+9λ260λ=684\lambda^2 + b^2 + 4b\lambda + 100 + 9\lambda^2 - 60\lambda = 68

13(b+2)2+b2+4b(b+2)60(b+2)+32=013(b+2)^2 + b^2 + 4b(b+2) - 60(b+2) + 32 = 0
⇒$$18b^2=36 ∴b^2=2

∴ Eccentricity of ellipse x25+y2b2=1\frac{x^2}{5} + \frac{y^2}{b^2} = 1 is
e=125e = \sqrt{1 - \frac{2}{5}}
e=35e = \frac{\sqrt{3}}{5}
So, the correct option is (B): 35 \frac{\sqrt{3}}{5}