Solveeit Logo

Question

Question: Let a line $L: 2y + x = 5$ and a circle $C: x^2 + y^2 = 25$ intersect at points $A$ and $B$. Match t...

Let a line L:2y+x=5L: 2y + x = 5 and a circle C:x2+y2=25C: x^2 + y^2 = 25 intersect at points AA and BB. Match the entries of List-I with the correct entries of List-II.

List-IList-II
(P) OBOB is equal to (where OO is the origin)(1) 80\sqrt{80}
(Q) Length of ABAB, is(2) 7
(R) OAOA is equal to (where OO is the origin)(3) 925\frac{9}{25}
(S) cos2AOB\cos^2 \angle AOB is equal to(4) 5
(5) 325\frac{3}{25}
A

(P)→(4); (Q)→(2); (R)→(1); (S)→(5)

B

(P)→(5); (Q)→(3); (R)→(1); (S)→(3)

C

(P)→(2); (Q)→(3); (R)→(1); (S)→(5)

D

(P)→(4); (Q)→(1); (R)→(4); (S)→(3)

Answer

(P)→(4); (Q)→(1); (R)→(4); (S)→(3)

Explanation

Solution

The circle C:x2+y2=25C: x^2 + y^2 = 25 has its center at the origin O(0,0)O(0,0) and radius R=5R=5. The line is L:x+2y5=0L: x + 2y - 5 = 0.
(P) and (R): Since AA and BB lie on the circle centered at OO, OA=OB=R=5OA = OB = R = 5. This matches entry (4).
(Q): The distance dd from O(0,0)O(0,0) to x+2y5=0x+2y-5=0 is d=0+2(0)512+22=55=5d = \frac{|0+2(0)-5|}{\sqrt{1^2+2^2}} = \frac{5}{\sqrt{5}} = \sqrt{5}. The length of the chord AB=2R2d2=252(5)2=2255=220=45=16×5=80AB = 2\sqrt{R^2 - d^2} = 2\sqrt{5^2 - (\sqrt{5})^2} = 2\sqrt{25-5} = 2\sqrt{20} = 4\sqrt{5} = \sqrt{16 \times 5} = \sqrt{80}. This matches entry (1).
(S): Using the Law of Cosines in AOB\triangle AOB: AB2=OA2+OB22(OA)(OB)cos(AOB)AB^2 = OA^2 + OB^2 - 2(OA)(OB)\cos(\angle AOB). 80=52+522(5)(5)cos(AOB)80 = 5^2 + 5^2 - 2(5)(5)\cos(\angle AOB) 80=5050cos(AOB)80 = 50 - 50\cos(\angle AOB) 30=50cos(AOB)    cos(AOB)=3530 = -50\cos(\angle AOB) \implies \cos(\angle AOB) = -\frac{3}{5}. cos2(AOB)=(35)2=925\cos^2(\angle AOB) = (-\frac{3}{5})^2 = \frac{9}{25}. This matches entry (3).