Solveeit Logo

Question

Question: Let $A = \left\{ (x, y) \in R \times R : |\sin x|. \sin y = \frac{-1}{4} \right\}$ $B = \left\{ (x,...

Let A={(x,y)R×R:sinx.siny=14}A = \left\{ (x, y) \in R \times R : |\sin x|. \sin y = \frac{-1}{4} \right\}

B={(x,y)R×R:cos(x+y)+cos(xy)=32}B = \left\{ (x, y) \in R \times R : \cos(x+y) + \cos(x - y) = \frac{3}{2} \right\}

C={(x,y)R×R:0<x<2π & π<y<2π}C = \left\{ (x, y) \in R \times R : 0 < x < 2\pi \ \& \ \pi < y < 2\pi \right\}

Then ABC|A \cap B \cap C| is

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

  1. Simplify Set B: The identity cos(x+y)+cos(xy)=2cosxcosy\cos(x+y) + \cos(x - y) = 2 \cos x \cos y is used. So, 2cosxcosy=322 \cos x \cos y = \frac{3}{2}, which simplifies to cosxcosy=34\cos x \cos y = \frac{3}{4}.

  2. Combine Conditions from A and B:

    • From Set A: sinxsiny=14|\sin x| \sin y = -\frac{1}{4}. Squaring both sides gives sin2xsin2y=116\sin^2 x \sin^2 y = \frac{1}{16}.
    • Using sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta, we get (1cos2x)(1cos2y)=116(1 - \cos^2 x)(1 - \cos^2 y) = \frac{1}{16}.
    • Expanding this, we have 1(cos2x+cos2y)+cos2xcos2y=1161 - (\cos^2 x + \cos^2 y) + \cos^2 x \cos^2 y = \frac{1}{16}.
    • From Set B, cosxcosy=34\cos x \cos y = \frac{3}{4}, so cos2xcos2y=(34)2=916\cos^2 x \cos^2 y = \left(\frac{3}{4}\right)^2 = \frac{9}{16}.
    • Substituting this into the expanded equation: 1(cos2x+cos2y)+916=1161 - (\cos^2 x + \cos^2 y) + \frac{9}{16} = \frac{1}{16}.
    • This simplifies to cos2x+cos2y=1+816=32\cos^2 x + \cos^2 y = 1 + \frac{8}{16} = \frac{3}{2}.
  3. Solve for cos2x\cos^2 x and cos2y\cos^2 y:

    • Let u=cos2xu = \cos^2 x and v=cos2yv = \cos^2 y. We have the system: u+v=32u + v = \frac{3}{2} uv=916uv = \frac{9}{16}
    • These are the roots of the quadratic equation t232t+916=0t^2 - \frac{3}{2}t + \frac{9}{16} = 0, which is equivalent to 16t224t+9=016t^2 - 24t + 9 = 0 or (4t3)2=0(4t - 3)^2 = 0.
    • The only solution is t=34t = \frac{3}{4}. Thus, cos2x=34\cos^2 x = \frac{3}{4} and cos2y=34\cos^2 y = \frac{3}{4}.
  4. Derive sinx|\sin x| and siny\sin y:

    • If cos2x=34\cos^2 x = \frac{3}{4}, then sin2x=134=14\sin^2 x = 1 - \frac{3}{4} = \frac{1}{4}, so sinx=12|\sin x| = \frac{1}{2}.
    • If cos2y=34\cos^2 y = \frac{3}{4}, then sin2y=134=14\sin^2 y = 1 - \frac{3}{4} = \frac{1}{4}, so siny=12|\sin y| = \frac{1}{2}.
    • Substitute sinx=12|\sin x| = \frac{1}{2} into Set A's condition: 12siny=14\frac{1}{2} \sin y = -\frac{1}{4}, which gives siny=12\sin y = -\frac{1}{2}. This is consistent with siny=12|\sin y| = \frac{1}{2}.
  5. Find possible values for xx and yy within Set C:

    • Set C requires 0<x<2π0 < x < 2\pi and π<y<2π\pi < y < 2\pi.

    • For siny=12\sin y = -\frac{1}{2} and y(π,2π)y \in (\pi, 2\pi), the possible values for yy are y=7π6y = \frac{7\pi}{6} (3rd quadrant) and y=11π6y = \frac{11\pi}{6} (4th quadrant).

    • Case 1: y=7π6y = \frac{7\pi}{6}

      • cosy=cos(7π6)=32\cos y = \cos(\frac{7\pi}{6}) = -\frac{\sqrt{3}}{2}.
      • From cosxcosy=34\cos x \cos y = \frac{3}{4}, we have cosx(32)=34\cos x (-\frac{\sqrt{3}}{2}) = \frac{3}{4}, so cosx=32\cos x = -\frac{\sqrt{3}}{2}.
      • For cosx=32\cos x = -\frac{\sqrt{3}}{2} and x(0,2π)x \in (0, 2\pi), the possible values for xx are x=5π6x = \frac{5\pi}{6} and x=7π6x = \frac{7\pi}{6}.
      • We must check if sinx=12|\sin x| = \frac{1}{2} for these values:
        • For x=5π6x = \frac{5\pi}{6}, sin(5π6)=12=12|\sin(\frac{5\pi}{6})| = |\frac{1}{2}| = \frac{1}{2}. Valid.
        • For x=7π6x = \frac{7\pi}{6}, sin(7π6)=12=12|\sin(\frac{7\pi}{6})| = |-\frac{1}{2}| = \frac{1}{2}. Valid.
      • This gives two points: (5π6,7π6)(\frac{5\pi}{6}, \frac{7\pi}{6}) and (7π6,7π6)(\frac{7\pi}{6}, \frac{7\pi}{6}). Both satisfy 0<x<2π0 < x < 2\pi and π<y<2π\pi < y < 2\pi.
    • Case 2: y=11π6y = \frac{11\pi}{6}

      • cosy=cos(11π6)=32\cos y = \cos(\frac{11\pi}{6}) = \frac{\sqrt{3}}{2}.
      • From cosxcosy=34\cos x \cos y = \frac{3}{4}, we have cosx(32)=34\cos x (\frac{\sqrt{3}}{2}) = \frac{3}{4}, so cosx=32\cos x = \frac{\sqrt{3}}{2}.
      • For cosx=32\cos x = \frac{\sqrt{3}}{2} and x(0,2π)x \in (0, 2\pi), the possible values for xx are x=π6x = \frac{\pi}{6} and x=11π6x = \frac{11\pi}{6}.
      • We must check if sinx=12|\sin x| = \frac{1}{2} for these values:
        • For x=π6x = \frac{\pi}{6}, sin(π6)=12=12|\sin(\frac{\pi}{6})| = |\frac{1}{2}| = \frac{1}{2}. Valid.
        • For x=11π6x = \frac{11\pi}{6}, sin(11π6)=12=12|\sin(\frac{11\pi}{6})| = |-\frac{1}{2}| = \frac{1}{2}. Valid.
      • This gives two points: (π6,11π6)(\frac{\pi}{6}, \frac{11\pi}{6}) and (11π6,11π6)(\frac{11\pi}{6}, \frac{11\pi}{6}). Both satisfy 0<x<2π0 < x < 2\pi and π<y<2π\pi < y < 2\pi.
  6. Conclusion:

    • In total, there are 4 points in the intersection ABCA \cap B \cap C: (5π6,7π6)(\frac{5\pi}{6}, \frac{7\pi}{6}), (7π6,7π6)(\frac{7\pi}{6}, \frac{7\pi}{6}), (π6,11π6)(\frac{\pi}{6}, \frac{11\pi}{6}), and (11π6,11π6)(\frac{11\pi}{6}, \frac{11\pi}{6}).
    • Therefore, ABC=4|A \cap B \cap C| = 4.