Solveeit Logo

Question

Question: Let \[A=\left\\{ \theta \in \left( \dfrac{-\pi }{2},\pi \right):\dfrac{3+2i\sin \theta }{1-2i\sin \t...

Let A=\left\\{ \theta \in \left( \dfrac{-\pi }{2},\pi \right):\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\text{ is purely imaginary} \right\\}. Then the sum of elements of A is

& A)\dfrac{5\pi }{6} \\\ & B)\dfrac{2\pi }{3} \\\ & C)\dfrac{3\pi }{4} \\\ & D)\pi \\\ \end{aligned}$$
Explanation

Solution

We know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero. So, we can say that the value of a in a+iba+ib is equal to zero. By using this concept, we can find the value of sinθ\sin \theta where the given complex number is imaginary. Now we should find the values of θ\theta in the range where θ(π2,π)\theta \in \left( \dfrac{-\pi }{2},\pi \right). Now we should find the sum of values of θ\theta .

Complete step by step answer:
From the question, it is clear that the value of 3+2isinθ12isinθ\dfrac{3+2i\sin \theta }{1-2i\sin \theta } is purely imaginary. Before solving the question, we should know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero.
Let us assume the complex number 3+2isinθ12isinθ\dfrac{3+2i\sin \theta }{1-2i\sin \theta } is equal to a+iba+ib.
3+2isinθ12isinθ=a+ib.......(1)\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=a+ib.......(1)
Now let us multiply and divide with 1+2isinθ1+2i\sin \theta on L.H.S of equation (1).

& \Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }\times \dfrac{1+2i\sin \theta }{1+2i\sin \theta }=a+ib \\\ & \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{\left( 1-2i\sin \theta \right)\left( 1+2i\sin \theta \right)}=a+ib \\\ \end{aligned}$$ We know that $$\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$$. $$\Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1-4{{i}^{2}}{{\sin }^{2}}\theta }=a+ib$$ We know that the value of $${{i}^{2}}$$ is equal to -1. $$\begin{aligned} & \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1+2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\\ & \Rightarrow \dfrac{\left( 3+2i\sin \theta \right)\left( 1 \right)+\left( 3+2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\\ & \Rightarrow \dfrac{3+2i\sin \theta +\left( 3 \right)\left( 2i\sin \theta \right)+\left( 2i\sin \theta \right)\left( 2i\sin \theta \right)}{1+4{{\sin }^{2}}\theta }=a+ib \\\ \end{aligned}$$ $$\Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta +4{{i}^{2}}{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib$$ We know that the value of $${{i}^{2}}$$ is equal to -1. $$\begin{aligned} & \Rightarrow \dfrac{3+2i\sin \theta +6i\sin \theta -4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a+ib \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta +8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib \\\ \end{aligned}$$ $$\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+\dfrac{8i\sin \theta }{1+4{{\sin }^{2}}\theta }=a+ib$$ $$\begin{aligned} & \Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=a.....(2) \\\ & \Rightarrow \dfrac{8\sin \theta }{1+4{{\sin }^{2}}\theta }=b.....(3) \\\ \end{aligned}$$ We know that a complex number is said to be purely imaginary if the real part of the complex number is equal to zero. So, we can say that the value of a in $$a+ib$$ is equal to zero. Then from equation (2), we can write that $$\Rightarrow \dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }=0$$ Now by using cross multiplication, we get $$\begin{aligned} & \Rightarrow 3-4{{\sin }^{2}}\theta =0 \\\ & \Rightarrow 4{{\sin }^{2}}\theta =3 \\\ \end{aligned}$$ Now by using cross multiplication, we get $$\begin{aligned} & \Rightarrow {{\sin }^{2}}\theta =\dfrac{3}{4} \\\ & \Rightarrow \sin \theta =\pm \dfrac{\sqrt{3}}{2} \\\ \end{aligned}$$ From the question, we were given that $$\theta \in \left( \dfrac{-\pi }{2},\pi \right)$$. We know that the values of $$\theta $$ if $$\theta \in \left( \dfrac{-\pi }{2},\pi \right)$$ for $$\sin \theta =\pm \dfrac{\sqrt{3}}{2}$$ are equal to $$\dfrac{-\pi }{3},\dfrac{\pi }{3},\dfrac{2\pi }{3}$$. Now we should find the sum of values of all possible values of $$\theta $$. Let us assume the sum of values of $$\theta $$ is equal to $$\sum{\theta }$$. $$\begin{aligned} & \Rightarrow \sum{\theta }=\dfrac{-\pi }{3}+\dfrac{\pi }{3}+\dfrac{2\pi }{3} \\\ & \Rightarrow \sum{\theta }=\dfrac{2\pi }{3}....(4) \\\ \end{aligned}$$ From equation (4), it is clear that the sum of all possible values of $$\theta $$ are equal to $$\dfrac{2\pi }{3}$$. **So, the correct answer is “Option B”.** **Note:** Some students may have a misconception that a complex number is said to be purely imaginary if the imaginary part of the complex number is equal to zero. Then, we will say that the value of b in $$a+ib$$ is equal to zero. If this misconception is followed, then we cannot get the correct answer. The final answer will definitely get interrupted. So, students should have a clear view of the concept.