Solveeit Logo

Question

Question: Let A = \(\left| \begin{matrix} 1 & \sin\theta & 1 \\ –\sin\theta & 1 & \sin\theta \\ –1 & –\sin\the...

Let A = 1sinθ1sinθ1sinθ1sinθ1\left| \begin{matrix} 1 & \sin\theta & 1 \\ –\sin\theta & 1 & \sin\theta \\ –1 & –\sin\theta & 1 \end{matrix} \right|, where 0 ≤θ≤2π,

then range of |A| is –

A

(2, 4)

B

(2, 4)

C

(2, 4)

D

All of these

Answer

All of these

Explanation

Solution

|A| = 1 (1 + sin2θ) – sin θ (0) + 1 (sin2θ + 1) = 2 + 2sin2θ

Now as – 1 ≤ sin θ ≤ 1∴ |A| ∈ [2, 4]