Solveeit Logo

Question

Question: Let \(A=\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right)\) and \(B=\left( ...

Let A=(ab cd )A=\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right) and B=(p q )(0 0 )B=\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)\ne \left( \begin{matrix} 0 \\\ 0 \\\ \end{matrix} \right) such that AB=BAB=B and a+d=2a+d=2 , then find the value of (adbc)\left( ad-bc \right).

Explanation

Solution

For answering this question we will use the given information in the question stated as A=(ab cd )A=\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right),B=(p q )(0 0 )B=\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)\ne \left( \begin{matrix} 0 \\\ 0 \\\ \end{matrix} \right),AB=BAB=B and a+d=2a+d=2. And then multiply A1{{A}^{-1}} on both sides of AB=BAB=B we need to find the determinant of AA which will be given as (adbc)\left( ad-bc \right) .

Complete step-by-step solution:
Now from the question we have A=(ab cd )A=\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right),B=(p q )(0 0 )B=\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)\ne \left( \begin{matrix} 0 \\\ 0 \\\ \end{matrix} \right),AB=BAB=B and a+d=2a+d=2.
By multiplying A1{{A}^{-1}} on both sides of the equation we will have
 A1AB=A1B B=A1B \begin{aligned} & \text{ }{{A}^{-1}}AB={{A}^{-1}}B \\\ & \Rightarrow B={{A}^{-1}}B \\\ \end{aligned}
Now, let us solve the given equation AB=BAB=B
(ab cd )(p q )=(p q ) (ap+bq cp+dq )=(p q ) \begin{aligned} & \left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right)\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)=\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right) \\\ & \Rightarrow \left( \begin{matrix} ap+bq \\\ cp+dq \\\ \end{matrix} \right)=\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right) \\\ \end{aligned}
From the equations we will have
ap+bq=pap+bq=p …………. (1)
cp+dq=qcp+dq=q …………….. (2)
By solving the equation AB=BAB=B we get the above two more equations.
And by simplifying the previous equation B =A1B using A1=1A(db ca )\text{B =}{{A}^{-1}}B \text{ using } {{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right)
Now, let us find the value of BB, by further solving the equation
B =A1B (p q )=1A(db ca )(p q ) (p q )=1A(dpbq cp+aq ) \begin{aligned} & \text{B =}{{A}^{-1}}B \\\ & \Rightarrow \left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)=\dfrac{1}{\left| A \right|}\left( \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right)\left( \begin{matrix} p \\\ q \\\ \end{matrix} \right) \\\ & \Rightarrow \left( \begin{matrix} p \\\ q \\\ \end{matrix} \right)=\dfrac{1}{\left| A \right|}\left( \begin{matrix} dp-bq \\\ -cp+aq \\\ \end{matrix} \right) \\\ \end{aligned}
Now from this we will have the following equations.
Ap=dpbq\left| A \right|p=dp-bq ………… (3)
Aq=cp+aq\left| A \right|q=-cp+aq …………… (4)
By further solving we get the above equations.
Now, by adding the equations (1) and (3) we will have
ap+bq+dpbq=p+Ap ap+dp=p(1+A) a+d=1+A \begin{aligned} & ap+bq+dp-bq=p+\left| A \right|p \\\ & \Rightarrow ap+dp=p\left( 1+\left| A \right| \right) \\\ & \Rightarrow a+d=1+\left| A \right| \\\ \end{aligned}
From the question we have a+d=2a+d=2 by using this equation we will have
1=A adbc=1 \begin{aligned} & \Rightarrow 1=\left| A \right| \\\ & \Rightarrow ad-bc=1 \\\ \end{aligned}
Hence we can conclude that the value of adbcad-bc is 11.

Note: While answering questions of this type we should be sure with the calculations and formulae of the matrices. The inverse of matrix A=(ab cd )A=\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right) is given as A1=1A(db ca ){{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right) because AA1=IA{{A}^{-1}}=I which can be simply written as (ab cd )A1=(10 01 )\left( \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right){{A}^{-1}}=\left( \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right) .