Solveeit Logo

Question

Question: Let \(A=\left[ \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 3 & 2 & 1 \\\ \end{matrix...

Let A=[100 210 321 ]A=\left[ \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 3 & 2 & 1 \\\ \end{matrix} \right] . If u1{{u}_{1}} and u2{{u}_{2}} are column matrices such that Au1=[1 0 0 ]A{{u}_{1}}=\left[ \begin{matrix} 1 \\\ 0 \\\ 0 \\\ \end{matrix} \right] and Au2=[0 1 0 ]A{{u}_{2}}=\left[ \begin{matrix} 0 \\\ 1 \\\ 0 \\\ \end{matrix} \right] then u1+u2{{u}_{1}}+{{u}_{2}} is equal to.
(a) [1 1 0 ]\left[ \begin{matrix} -1 \\\ 1 \\\ 0 \\\ \end{matrix} \right]
(b) [1 1 1 ]\left[ \begin{matrix} 1 \\\ -1 \\\ -1 \\\ \end{matrix} \right]
(c) [1 1 0 ]\left[ \begin{matrix} -1 \\\ -1 \\\ 0 \\\ \end{matrix} \right]
(d) [1 1 1 ]\left[ \begin{matrix} -1 \\\ 1 \\\ -1 \\\ \end{matrix} \right]

Explanation

Solution

Hint: For solving this problem we should know how to multiply any two matrices. First, we will assume the unknown matrices and then solve some linear equations to find the elements of these matrices and ultimately we will find u1{{u}_{1}} and u2{{u}_{2}} . Then, we will solve for u1+u2{{u}_{1}}+{{u}_{2}} .

Complete step-by-step answer:
A=[100 210 321 ]A=\left[ \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 3 & 2 & 1 \\\ \end{matrix} \right] and Au1=[1 0 0 ]A{{u}_{1}}=\left[ \begin{matrix} 1 \\\ 0 \\\ 0 \\\ \end{matrix} \right] , Au2=[0 1 0 ]A{{u}_{2}}=\left[ \begin{matrix} 0 \\\ 1 \\\ 0 \\\ \end{matrix} \right] where u1{{u}_{1}} and u2{{u}_{2}} are column matrices.
Now, as AA has 3 rows and 3 columns then, order of AA is 3×33\times 3 .So, u1{{u}_{1}} and u2{{u}_{2}} will have 3 rows and only one column. Then, order of u1{{u}_{1}} and u2{{u}_{2}} will be 3×13\times 1 .
Let, u1=[a1 b1 c1 ]{{u}_{1}}=\left[ \begin{matrix} {{a}_{1}} \\\ {{b}_{1}} \\\ {{c}_{1}} \\\ \end{matrix} \right] . Then,
Au1=[100 210 321 ]×[a1 b1 c1 ]=[1 0 0 ] Au1=[a1 2a1+b1 3a1+2b1+c1 ]=[1 0 0 ] \begin{aligned} & A{{u}_{1}}=\left[ \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 3 & 2 & 1 \\\ \end{matrix} \right]\times \left[ \begin{matrix} {{a}_{1}} \\\ {{b}_{1}} \\\ {{c}_{1}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ 0 \\\ 0 \\\ \end{matrix} \right] \\\ & \Rightarrow A{{u}_{1}}=\left[ \begin{matrix} {{a}_{1}} \\\ 2{{a}_{1}}+{{b}_{1}} \\\ 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ 0 \\\ 0 \\\ \end{matrix} \right] \\\ \end{aligned}
Now, in the above equation, we will equate each term of the two matrices. Then,
[a1 2a1+b1 3a1+2b1+c1 ]=[1 0 0 ] a1=1.............(1) 2a1+b1=0..............(2) 3a1+2b1+c1=0................(3) \begin{aligned} & \left[ \begin{matrix} {{a}_{1}} \\\ 2{{a}_{1}}+{{b}_{1}} \\\ 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ 0 \\\ 0 \\\ \end{matrix} \right] \\\ & \Rightarrow {{a}_{1}}=1.............\left( 1 \right) \\\ & \Rightarrow 2{{a}_{1}}+{{b}_{1}}=0..............\left( 2 \right) \\\ & \Rightarrow 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0................\left( 3 \right) \\\ \end{aligned}
Now, put a1=1{{a}_{1}}=1 from (1) in equation (2) to get the value of b1{{b}_{1}} . Then,
2a1+b1=0 2×1+b1=0 b1=2..............(4) \begin{aligned} & 2{{a}_{1}}+{{b}_{1}}=0 \\\ & \Rightarrow 2\times 1+{{b}_{1}}=0 \\\ & \Rightarrow {{b}_{1}}=-2..............\left( 4 \right) \\\ \end{aligned}
Now, put a1=1{{a}_{1}}=1 from (1) and b1=2{{b}_{1}}=-2 from (4) to get the value of c1{{c}_{1}} . Then,
3a1+2b1+c1=0 3×1+2×(2)+c1=0 34+c1=0 c1=1 \begin{aligned} & 3{{a}_{1}}+2{{b}_{1}}+{{c}_{1}}=0 \\\ & \Rightarrow 3\times 1+2\times \left( -2 \right)+{{c}_{1}}=0 \\\ & \Rightarrow 3-4+{{c}_{1}}=0 \\\ & \Rightarrow {{c}_{1}}=1 \\\ \end{aligned}
Now, we have the value of a1=1{{a}_{1}}=1 , b1=2{{b}_{1}}=-2 and c1=1{{c}_{1}}=1 . Then,
u1=[a1 b1 c1 ] u1=[1 2 1 ].....................(5) \begin{aligned} & {{u}_{1}}=\left[ \begin{matrix} {{a}_{1}} \\\ {{b}_{1}} \\\ {{c}_{1}} \\\ \end{matrix} \right] \\\ & \Rightarrow {{u}_{1}}=\left[ \begin{matrix} 1 \\\ -2 \\\ 1 \\\ \end{matrix} \right].....................\left( 5 \right) \\\ \end{aligned}
Similarly, we can get u2{{u}_{2}} . Let u2=[a2 b2 c2 ]{{u}_{2}}=\left[ \begin{matrix} {{a}_{2}} \\\ {{b}_{2}} \\\ {{c}_{2}} \\\ \end{matrix} \right] . Then,
Au2=[100 210 321 ]×[a2 b2 c2 ]=[0 1 0 ] Au2=[a2 2a2+b2 3a2+2b2+c2 ]=[0 1 0 ] \begin{aligned} & A{{u}_{2}}=\left[ \begin{matrix} 1 & 0 & 0 \\\ 2 & 1 & 0 \\\ 3 & 2 & 1 \\\ \end{matrix} \right]\times \left[ \begin{matrix} {{a}_{2}} \\\ {{b}_{2}} \\\ {{c}_{2}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 0 \\\ 1 \\\ 0 \\\ \end{matrix} \right] \\\ & \Rightarrow A{{u}_{2}}=\left[ \begin{matrix} {{a}_{2}} \\\ 2{{a}_{2}}+{{b}_{2}} \\\ 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 0 \\\ 1 \\\ 0 \\\ \end{matrix} \right] \\\ \end{aligned}
Now, in the above equation, we will equate each term of the two matrices. Then,
[a2 2a2+b2 3a2+2b2+c2 ]=[0 1 0 ] a2=0.............(6) 2a2+b2=1..............(7) 3a2+2b2+c2=0................(8) \begin{aligned} & \left[ \begin{matrix} {{a}_{2}} \\\ 2{{a}_{2}}+{{b}_{2}} \\\ 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}} \\\ \end{matrix} \right]=\left[ \begin{matrix} 0 \\\ 1 \\\ 0 \\\ \end{matrix} \right] \\\ & \Rightarrow {{a}_{2}}=0.............\left( 6 \right) \\\ & \Rightarrow 2{{a}_{2}}+{{b}_{2}}=1..............\left( 7 \right) \\\ & \Rightarrow 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0................\left( 8 \right) \\\ \end{aligned}
Now, put a2=0{{a}_{2}}=0 from (6) in equation (7) to get the value of b2{{b}_{2}} . Then,
2a2+b2=1 2×0+b2=1 b2=1..............(9) \begin{aligned} & 2{{a}_{2}}+{{b}_{2}}=1 \\\ & \Rightarrow 2\times 0+{{b}_{2}}=1 \\\ & \Rightarrow {{b}_{2}}=1..............\left( 9 \right) \\\ \end{aligned}
Now, put a2=0{{a}_{2}}=0 from (6) and b2=1{{b}_{2}}=1 from (9) to get the value of c2{{c}_{2}} . Then,
3a2+2b2+c2=0 3×0+2×1+c2=0 0+2+c2=0 c2=2 \begin{aligned} & 3{{a}_{2}}+2{{b}_{2}}+{{c}_{2}}=0 \\\ & \Rightarrow 3\times 0+2\times 1+{{c}_{2}}=0 \\\ & \Rightarrow 0+2+{{c}_{2}}=0 \\\ & \Rightarrow {{c}_{2}}=-2 \\\ \end{aligned}
Now, we have the value of a2=0{{a}_{2}}=0 , b2=1{{b}_{2}}=1 and c2=2{{c}_{2}}=-2 . Then,
u2=[a2 b2 c2 ] u2=[0 1 2 ].....................(10) \begin{aligned} & {{u}_{2}}=\left[ \begin{matrix} {{a}_{2}} \\\ {{b}_{2}} \\\ {{c}_{2}} \\\ \end{matrix} \right] \\\ & \Rightarrow {{u}_{2}}=\left[ \begin{matrix} 0 \\\ 1 \\\ -2 \\\ \end{matrix} \right].....................\left( 10 \right) \\\ \end{aligned}
Now, adding equation (5) and (10). Then,

& {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix} 1 \\\ -2 \\\ 1 \\\ \end{matrix} \right]+\left[ \begin{matrix} 0 \\\ 1 \\\ -2 \\\ \end{matrix} \right] \\\ & \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix} 1+0 \\\ -2+1 \\\ 1-2 \\\ \end{matrix} \right] \\\ & \Rightarrow {{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix} 1 \\\ -1 \\\ -1 \\\ \end{matrix} \right] \\\ \end{aligned}$$ Thus, we got $${{u}_{1}}+{{u}_{2}}=\left[ \begin{matrix} 1 \\\ -1 \\\ -1 \\\ \end{matrix} \right]$$ . Hence, (b) is the correct option. Note: We can solve this question by another approach in which first we write $A{{u}_{1}}+A{{u}_{2}}$ by simply adding the given data and then pre multiplying the result with ${{A}^{-1}}$ for which we have to find the matrix ${{A}^{-1}}$ from the given data. After pre multiplying the result with ${{A}^{-1}}$ we will directly get ${{u}_{1}}+{{u}_{2}}$ . Moreover, the student must take care of calculation mistakes while solving the question.