Solveeit Logo

Question

Question: Let \[A = \left[ {\begin{array}{*{20}{c}} 3&0&3 \\\ 0&3&0 \\\ 3&0&3 \end{array}} \r...

Let A = \left[ {\begin{array}{*{20}{c}} 3&0&3 \\\ 0&3&0 \\\ 3&0&3 \end{array}} \right]. Then the roots of the equation det(AλI3)=0\det \left( {A - \lambda {I_3}} \right) = 0 (where I3{I_3} is the identity matrix of order 3) are ?
A. 3, 0, 3
B. 0, 3, 6
C. 1, 0, -6
D. 3, 3, 6

Explanation

Solution

Hint:- We had to only put the value of I3{I_3} in the equation det(AλI3)=0\det \left( {A - \lambda {I_3}} \right) = 0 as I3{I_3} is the identity matrix of order 3. And after solving this equation we will get the required value of λ\lambda .

Complete step-by-step answer:
Now as we know that the identity matrix has its all diagonal elements equal to 1 and all other elements are equal to 0.
So, the matrix I3{I_3} will be an identity matrix of order 3.
So, {I_3} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\\ 0&1&0 \\\ 0&0&1 \end{array}} \right]
Now as we know that when we multiply any constant value to any matrix then that value is multiplied with each element of that matrix.
So, \lambda {I_3} = \left[ {\begin{array}{*{20}{c}} \lambda &0&0 \\\ 0&\lambda &0 \\\ 0&0&\lambda \end{array}} \right] (1)
Now, as the order of the matrix A and λI3\lambda {I_3} is the same (i.e. 3). So, when we subtract these two matrices then each corresponding element will get subtracted.
So, A - \lambda {I_3} = \left[ {\begin{array}{*{20}{c}} 3&0&3 \\\ 0&3&0 \\\ 3&0&3 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} \lambda &0&0 \\\ 0&\lambda &0 \\\ 0&0&\lambda \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {3 - \lambda }&0&3 \\\ 0&{3 - \lambda }&0 \\\ 3&0&{3 - \lambda } \end{array}} \right] (2)
So, now we have to find the determinant of the matrix AλI3A - \lambda {I_3} and put that equal to zero. To find the value of λ\lambda .
As we know that if X = \left[ {\begin{array}{*{20}{c}} a&b;&c; \\\ d&e;&f; \\\ g&h;&i; \end{array}} \right] is a matrix then the determinant of the matrix X is calculated as,
det(X)=a(e×if×h)b(d×if×g)+c(d×he×g)\Rightarrow \det \left( X \right) = a\left( {e \times i - f \times h} \right) - b\left( {d \times i - f \times g} \right) + c\left( {d \times h - e \times g} \right)
So, now let us find the determinant of the matrix AλI3A - \lambda {I_3}.
det(AλI3)=(3λ)((3λ)×(3λ)0)0(0×(3λ)0×3)+3(0×0(3λ)×3)\Rightarrow \det \left( {A - \lambda {I_3}} \right) = \left( {3 - \lambda } \right)\left( {\left( {3 - \lambda } \right) \times \left( {3 - \lambda } \right) - 0} \right) - 0\left( {0 \times \left( {3 - \lambda } \right) - 0 \times 3} \right) + 3\left( {0 \times 0 - \left( {3 - \lambda } \right) \times 3} \right)
det(AλI3)=(3λ)39(3λ)=(3λ)(32+λ26λ9)\Rightarrow \det \left( {A - \lambda {I_3}} \right) = {\left( {3 - \lambda } \right)^3} - 9\left( {3 - \lambda } \right) = \left( {3 - \lambda } \right)\left( {{3^2} + {\lambda ^2} - 6\lambda - 9} \right)
det(AλI3)=(3λ)(λ26λ)=λ(3λ)(λ6)\Rightarrow \det \left( {A - \lambda {I_3}} \right) = \left( {3 - \lambda } \right)\left( {{\lambda ^2} - 6\lambda } \right) = \lambda \left( {3 - \lambda } \right)\left( {\lambda - 6} \right) -----(3)
So, now as it is given in the question that the det(AλI3)=0\det \left( {A - \lambda {I_3}} \right) = 0. So, equating equation 3 with zero.
λ(3λ)(λ6)=0\Rightarrow \lambda \left( {3 - \lambda } \right)\left( {\lambda - 6} \right) = 0
So, λ=0,3,6\lambda = 0,3,6
Hence, the correct option will be B.

Note:- Whenever we come up with this type of problem then we should remember that In{I_n} is an identity matrix of order n×nn \times n, with all its diagonal elements equal to 1 and all other elements equal to zero. And when we multiply any constant term λ\lambda with any matrix then each element of the matrix is multiplied by λ\lambda . So, first we had to find the value of λI3\lambda {I_3} and then subtract that with the matrix A to find the value of matrix A – λI3\lambda {I_3}. And then we had to find the determinant formula to find the value of det(A – λI3\lambda {I_3}) and then equate that with zero to find the value of λ\lambda . This will be the easiest and efficient way to find the solution of the problem.