Question
Question: Let A=\[\left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 2&1&0 \\\ 3&2&1 \end{array}} \rig...
Let A=\left( {\begin{array}{*{20}{c}} 1&0&0 \\\ 2&1&0 \\\ 3&2&1 \end{array}} \right)and U1,U2,U3 be column matrices satisfying
1 \\\ 0 \\\ 0 \end{array}} \right)\,,\,A{U_2} = \left( {\begin{array}{*{20}{c}} 2 \\\ 3 \\\ 0 \end{array}} \right),\,A{U_3} = \left( {\begin{array}{*{20}{c}} 2 \\\ 3 \\\ 1 \end{array}} \right)$$. If U is 3*3 matrix whose column are U1,U2,U3 then |U|?Solution
Hint : Here the given question is of matrix, in which the relation between matrices are given and in order to solve it we are going to use multiplication and addition property of matrices, and the data given in the question which describes the relation of all theses matrices.
Complete step-by-step answer :
The given question is of solving matrices, here first we have to find the matrix “U” in order to find the determinent of the matrix, on solving we get:
Here the relation is given for U1,U2,U3 in product with the matrix A, so we will here add all theses matrices and then take common the matrix A, in order to solve further, on solving we get:
Now here we obtain a relation between matrices, and now to solve further for the matrix “U” which is summation of the three matrices U1,U2,U3, here to solve further we have to multiply the identity matrix on the right side of equation, we know the property of identity matrix that multiplying it by any matrix does not affect the values of matrix.
On solving we get:
\Rightarrow {C_1} \to {C_1} - 2{C_2} \\
\Rightarrow \left( {\begin{array}{{20}{c}}
{1 - 2(0)}&0&0 \\
{2 - 2(1)}&1&0 \\
{3 - 2(2)}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{5 - 2(5)}&5&5 \\
{6 - 2(6)}&6&6 \\
{1 - 2(1)}&1&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&2&1
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{ - 5}&5&5 \\
{ - 6}&6&6 \\
{ - 1}&1&1
\end{array}} \right) \\
\Rightarrow {C_2} \to {C_2} - 2{C_3} \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&{0 - 2(0)}&0 \\
0&{1 - 2(0)}&0 \\
{ - 1}&{2 - 2(1)}&1
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{ - 5}&{5 - 2(5)}&5 \\
{ - 6}&{6 - 2(6)}&6 \\
{ - 1}&{1 - 2(1)}&1
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1}&0&1
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1}&{ - 1}&1
\end{array}} \right) \\
\Rightarrow {R_3} \to {R_3} + {R_1} \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
{ - 1 + 1}&{0 + 0}&{1 + 0}
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 1 + ( - 5)}&{ - 1 + ( - 5)}&{1 + 5}
\end{array}} \right) \\
\Rightarrow \left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right)(U) = \left( {\begin{array}{{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right) \\
\Rightarrow U = \left( {\begin{array}{{20}{c}}
{ - 5}&{ - 5}&5 \\
{ - 6}&{ - 6}&6 \\
{ - 6}&{ - 6}&6
\end{array}} \right)(\sin ce,\left( {\begin{array}{{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = Identity,matrix) \\